Decomposition Of \(\pi g \alpha \)-Sets

- Introduction
- \(\pi g \alpha \)-Locally Closed Sets
- \(\pi G \alpha \)-LC Continuous And \(\pi G \alpha \)-LC Irresolute Functions
- Decomposition Of \(\pi g \alpha \)-Continuity
CHAPTER V

DECOMPOSITION OF \(\pi g\alpha \)-SETS

5.1 Introduction

The notion of a locally closed set in a topological space was studied by many topologists [58, 82, 171]. Thereafter Balachandran [15], Arockia Rani [6], Nasef [113] and Park [147] studied the weaker forms of locally closed sets. Noiri [129], Ganster and Reilly [59], Nashef [2] established decomposition of \(\alpha \)-continuity, A-continuity, \(\alpha \)-continuity and semi-continuity respectively. In this chapter, we introduce three new classes of sets called \(\pi G\alpha \)-LC\((X,\tau)\), \(\pi G\alpha \)-LC\(\ast\)(\(X,\tau)\), \(\pi G\alpha \)-LC\(\ast\ast\)(\(X,\tau)\) sets along with their respective continuity and irresoluteness. The notions of \(C_\tau \)-sets, \(C_{\tau^+} \)-sets and \(K_{\tau^+} \)-sets, \(K_\tau \)-sets are used to obtain decompositions of \(\pi g \)-continuity, \(\pi g \)-open maps, contra-\(\pi g \)-continuity and decompositions of \(\pi g\alpha \)-continuity, \(\pi g\alpha \)-open maps, contra-\(\pi g\alpha \)-continuity respectively.

5.2 \(\pi g\alpha \)-Locally Closed Sets

In this section we define \(\pi g\alpha \)-locally closed sets which contain the class of \(\alpha \)-LC sets and study some of their properties.

Definition 5.2.1: A subset \(S \) of \((X, \tau)\) is called

a) \(\pi g\alpha \)-locally closed (briefly a \(\pi g\alpha \)-lc set) if \(S = A \cap B \) where \(A \) is \(\pi g\alpha \)-open and \(B \) is \(\pi g\alpha \)-closed in \(X \).

b) a \(\pi g\alpha \)-lc\(\ast\) set if there exist a \(\pi g\alpha \)-open set \(A \) and a closed set \(B \) of \(X \) such that \(S = A \cap B \).

c) a \(\pi g\alpha \)-lc\(\ast\ast\) set if there exist an open set \(A \) and a \(\pi g\alpha \)-closed set \(B \) of \(X \) such that \(S = A \cap B \).

The collection of all \(\pi g\alpha \)-lc sets, \(\pi g\alpha \)-lc\(\ast\) sets and \(\pi g\alpha \)-lc\(\ast\ast\) sets of \((X, \tau)\) will be denoted by \(\pi G\alpha \)-LC\((X,\tau)\), \(\pi G\alpha \)-LC\(\ast\)(\(X,\tau)\) and \(\pi G\alpha \)-LC\(\ast\ast\)(\(X,\tau)\) respectively.
Proposition 5.2.2: i) If $A \in \text{LC}(X, \tau)$, then $A \in \pi \alpha \text{-LC}(X, \tau)$.

ii) If $A \in \text{LC}(X, \tau)$, then $A \in \pi \alpha \text{-LC}^*(X, \tau)$ and $\pi \alpha \text{-LC}**(X, \tau)$.

iii) If $A \in \pi \alpha \text{-LC}^*(X, \tau)$, then $A \in \pi \alpha \text{-LC}(X, \tau)$.

iv) If $A \in \alpha \text{-LC}(X, \tau)$, then $A \in \pi \alpha \text{-LC}(X, \tau)$.

v) If $A \in \alpha \text{-LC}^*(X, \tau)$, then $A \in \pi \alpha \text{-LC}^*(X, \tau)$.

vi) If $A \in \alpha \text{-LC}**(X, \tau)$, then $A \in \pi \alpha \text{-LC}**(X, \tau)$.

Proof: Obvious.

Remark 5.2.3: Converse of the above need not be true as seen in the following examples.

Example 5.2.4:

i) Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}\}$. Then $\text{LC}(X) = \{\emptyset, X, \{a\}, \{b,c,d\}\}$. Then $\pi \alpha \text{-LC}(X) = P(X)$. This shows that a $\pi \alpha$-locally closed set need not be locally closed.

ii) Let $X = \{a,b,c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$. Then $\text{LC}(X, \tau) = \{\emptyset, X, \{a, b\}, \{c\}\}$. Then $\{a\} \in \pi \alpha \text{-LC}^*(X, \tau)$ and $\pi \alpha \text{-LC}**(X, \tau)$ but $\{a\} \notin \text{LC}(X, \tau)$.

Example 5.2.5: a) Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c,d\}\}$. Then

i) $\{a, b, d\} \in \pi \alpha \text{-LC}(X, \tau)$ but $\{a, b, d\} \notin \pi \alpha \text{-LC}^*(X, \tau)$.

ii) $\{a, b, c\} \in \pi \alpha \text{-LC}**(X, \tau)$ but $\{a, b, c\} \notin \pi \alpha \text{-LC}^*(X, \tau)$.

b) Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then

i) $\{a, b\} \in \pi \alpha \text{-LC}(X, \tau)$ but $\{a, b\} \notin \alpha \text{-LC}(X, \tau)$.

ii) $\{c\} \in \pi \alpha \text{-LC}^*(X, \tau)$ but $\{c\} \notin \alpha \text{-LC}^*(X, \tau)$.

iii) $\{c\} \in \pi \alpha \text{-LC}**(X, \tau)$ but $\{c\} \notin \alpha \text{-LC}**(X, \tau)$.

Remark 5.2.6: The above discussions are summarized in the following diagram.
Proposition 5.2.7: a) Let \((X, \tau)\) be a \(\pi g\alpha\)-space. Then

i) \(\pi G\alpha-LC(X, \tau) = LC(X, \tau)\).

ii) \(\pi G\alpha-LC(X, \tau) \subseteq GLC(X, \tau)\).

iii) \(\pi G\alpha-LC(X, \tau) \subseteq \alpha-LC(X, \tau)\).

b) If \(\pi G\alpha-O(X, \tau) = GO(X, \tau)\), then \(\pi G\alpha-LC(X, \tau) = GLC(X, \tau)\).

c) If \(X\) is a \(\pi g\alpha-T\frac{1}{2}\) space, then \(\pi G\alpha-LC(X, \tau) = \alpha-LC(X, \tau)\).

d) If \(X\) is a \(\pi g\alpha\)-space, then \(\pi G\alpha-LC(X, \tau) = \pi G\alpha-LC*(X, \tau) = \pi G\alpha-LC**(X, \tau)\)

Proof: a) i) Since every \(\pi g\alpha\)-open set is open and every \(\pi g\alpha\)-closed set is closed in \(X\), we have \(\pi G\alpha-LC(X, \tau) \subseteq LC(X, \tau)\) and hence \(\pi G\alpha-LC(X, \tau) = LC(X, \tau)\).

ii) and iii) Since \(LC(X, \tau) \subseteq GLC(X, \tau)\) and \(LC(X, \tau) \subseteq \alpha-LC(X, \tau)\) for any space \(X\) and from i) the proof follows.

b) Let \(A \in \pi G\alpha-LC(X, \tau)\). Then \(A = P \cap Q\) where \(P\) is \(\pi g\alpha\)-open and \(Q\) is \(\pi g\alpha\)-closed in \(X\). By hypothesis, \(P\) is \(g\)-open and \(Q\) is \(g\)-closed. Therefore \(A \in GLC(X, \tau)\) and \(\pi G\alpha-LC(X, \tau) \subseteq GLC(X, \tau)\). Obviously \(GLC(X, \tau) \subseteq \pi G\alpha-LC(X, \tau)\).

Hence \(\pi G\alpha-LC(X, \tau) = GLC(X, \tau)\).

c) Follows from definition 2.3.14 and from the fact that every \(\alpha\)-open set is \(\pi g\alpha\)-open.

d) Obvious.
Remark 5.2.8: Converse of the above Proposition 5.2.7 (b), (c) does not hold as seen in the following example.

Example 5.2.9: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ then $G_\alpha\text{-LC}(X, \tau) = \alpha\text{-LC}(X, \tau) = \text{GLC}(X, \tau) = P(X)$. But $G_\alpha O(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}\} \neq \pi G_\alpha O(X)$.

$aO(X) = \{\phi, X, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\} \neq \pi G_\alpha O(X)$.

Remark 5.2.10: For subsequent results in this chapter we assume that $\pi G_\alpha C(X, \tau)$ is closed under finite intersections.

The hypothesis in Proposition 5.2.7 d) can be weakened as follows.

Proposition 5.2.11: If $\pi G_\alpha O(X, \tau) \subset \text{LC}(X, \tau)$, then $\pi G_\alpha\text{-LC}(X, \tau) = \pi G_\alpha\text{-LC}^*(X, \tau) = \pi G_\alpha\text{-LC}^{**}(X, \tau)$.

Proof: Let $A \in \pi G_\alpha\text{-LC}(X)$. Then $A = P \cap Q$ where P is πg_α-open and Q is πg_α-closed. Since $\pi G_\alpha O(X, \tau) \subset \text{LC}(X, \tau)$ implies $\pi G_\alpha C(X, \tau) \subset \text{LC}(X, \tau)$, we have Q is locally closed. Let $Q = M \cap N$ where M is open and N is closed. So $A = (P \cap M) \cap N$ where $P \cap M$ is πg_α-open and N is closed. Hence $A \in \pi G_\alpha\text{-LC}^*(X)$. For any space X, $\pi G_\alpha\text{-LC}^*(X) \subset \pi G_\alpha\text{-LC}(X)$. Thus $\pi G_\alpha\text{-LC}(X) = \pi G_\alpha\text{-LC}^*(X)$. Let $B \in \pi G_\alpha\text{-LC}(X)$. Then $B = P \cap Q$ where P is πg_α-open and Q is πg_α-closed. Since $\pi G_\alpha O(X, \tau) \subset \text{LC}(X, \tau)$ implies P is locally closed, we have $P = M \cap N$ where M is open and N is closed. So $A = M \cap (N \cap Q)$ where M is open and $N \cap Q$ is πg_α-closed. Hence $B \in \pi G_\alpha\text{-LC}^{**}(X)$. For any space X, $\pi G_\alpha\text{-LC}^{**}(X) \subset \pi G_\alpha\text{-LC}(X)$. Thus $\pi G_\alpha\text{-LC}(X, \tau) = \pi G_\alpha\text{-LC}^{**}(X, \tau)$.

Now, we obtain a characterization for $\pi G_\alpha\text{-LC}^{*}(X, \tau)$ sets as follows:

Theorem 5.2.12: For a subset S of (X, τ) the following are equivalent:
1. $S \in \pi G_\alpha\text{-LC}^{*}(X, \tau)$.
2. $S = P \cap \text{cl}(S)$ for some πg_α-open set P.
3. $\text{cl}(S) - S$ is πg_α-closed.
4. $S \cup (X - \text{cl}(S))$ is πg_α-open.

Proof : $1 \Rightarrow 2$: Let $S \in \pi G_\alpha - \text{LC}^*(X, \tau)$. Then there exist a πg_α-open set P and a closed set F in (X, τ) such that $S = P \cap F$. Since $S \subset P$ and $S \subset \text{cl}(S)$, we have $S \subset P \cap \text{cl}(S)$.

Also, $S \subset F$ and F is closed implies $P \cap \text{cl}(S) \subset P \cap F = S$. Hence $S = P \cap \text{cl}(S)$.

$2 \Rightarrow 1$: Since P is πg_α-open and $\text{cl}(S)$ is closed, $S = P \cap \text{cl}(S) \in \pi G_\alpha - \text{LC}^*(X, \tau)$.

$2 \Rightarrow 3$: Let $S = P \cap \text{cl}(S)$ for some πg_α-open set P. We have $\text{cl}(S) - S = \text{cl}(S) \cap P^c$, which is πg_α-closed.

$3 \Rightarrow 2$: Assume $\text{cl}(S) - S$ is πg_α-closed. Let $P = X - (\text{cl}(S) - S)$. Then P is πg_α-open and $S = P \cap \text{cl}(S)$.

$3 \Rightarrow 4$: Let $F = \text{cl}(S) - S$. Then F is πg_α-closed, by assumption.

$4 \Rightarrow 3$: Let $U = S \cup (X - \text{cl}(S))$. Then U is πg_α-open. This implies $X - U = X - (S \cup (X - \text{cl}(S))) = (X - S) \cap \text{cl}(S) = \text{cl}(S) - S$ is πg_α-closed.

Remark 5.2.13: It is not true that $S \in \pi G_\alpha - \text{LC}^*(X, \tau)$ if and only if $S \subset \text{int}(S \cup (X - \text{cl}(S)))$. Let $S = \{b, c\}$ be a subset of the topological space (X, τ) given in Example 5.2.5(a). Then $S \subset \text{int}(S \cup (X - \text{cl}(S)))$ but $S \in \pi G_\alpha - \text{LC}^*(X, \tau)$.

Definition 5.2.14: A topological space (X, τ) is called πg_α-submaximal if every dense subset in (X, τ) is πg_α-open.

Proposition 5.2.15: a) Let (X, τ) be a topological space. If X is submaximal, then it is πg_α-submaximal.

b) A topological space (X, τ) is πg_α-submaximal if and only if $\pi G_\alpha - \text{LC}^*(X, \tau) = P(X)$.

Proof : a) Obvious.

b) **Necessity**: Let $S \in P(X)$ and $U = S \cup (X - \text{cl}(S))$. Then $\text{cl}(U) = X$. U is dense in X and X is πg_α-submaximal implies U is πg_α-open. By Theorem 5.2.12, $S \in \pi G_\alpha - \text{LC}^*(X, \tau)$.

Sufficiency: Let S be a dense subset of (X, τ). Then $S \cup (X - \text{cl}(S)) = S \cup \phi = S$. Now
$S \in P(X)$ implies $S \in \pi G \alpha - LC^*(X, \tau)$. By Theorem 5.2.12, $S \cup (X - cl(S)) = S$ is $\pi g \alpha$-open. Hence (X, τ) is $\pi g \alpha$-submaximal.

Remark 5.2.16: Converse of Proposition 5.2.15 a) is not true as seen in the following example.

Example 5.2.17: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Let $A = \{a, b\}$. Then A is dense in X such that A is $\pi g \alpha$-open but not open.

Proposition 5.2.18: For a subset S of (X, τ) if $S \in \pi G \alpha - LC^{**}(X, \tau)$, then there exists an open set P such that $S = P \cap cl(S)$ where $cl(S)$ is the $\pi g \alpha$-closure of S.

Proof: Let $S \in \pi G \alpha - LC^{**}(X, \tau)$. Then there exist an open set P and a $\pi g \alpha$-closed set F of (X, τ) such that $S = P \cap F$. Since $S \subset P$ and $S \subset cl(S)$, we have $S \subset P \cap cl(S)$. Since $cl(S) \subset F$, we have $P \cap cl(S) \subset P \cap F \subset S$. Thus $S = P \cap cl(S)$.

Theorem 5.2.19: Let A and B be any two subsets of (X, τ).

a) If $A \in \pi G \alpha - LC(X, \tau)$ and B is $\pi g \alpha$-open or $\pi g \alpha$-closed, then $A \cap B \in \pi G \alpha - LC(X, \tau)$.

b) If $A \in \pi G \alpha - LC^{**}(X, \tau)$ and B is closed or open, then $A \cap B \in \pi G \alpha - LC^{**}(X, \tau)$.

Proof: a) $A \in \pi G \alpha - LC(X, \tau)$ implies $A \cap B = (G \cap F) \cap B$ for some $\pi g \alpha$-open set G and $\pi g \alpha$-closed set F. If B is $\pi g \alpha$-open then $A \cap B = (G \cap B) \cap F \in \pi G \alpha - LC(X, \tau)$. If B is $\pi g \alpha$-closed, then $A \cap B = G \cap (B \cap F) \in \pi G \alpha - LC(X, \tau)$.

b) If $A \in \pi G \alpha - LC^{**}(X, \tau)$, then there exist an open set G and a $\pi g \alpha$-closed set F of (X, τ) such that $A \cap B = (G \cap F) \cap B$. If B is open, then $A \cap B = (G \cap B) \cap F \in \pi G \alpha - LC^{**}(X, \tau)$. If B is closed, then $A \cap B = G \cap (F \cap B) \in \pi G \alpha - LC^{**}(X, \tau)$.

Theorem 5.2.20: If $A \in \pi G \alpha - LC^*(X, \tau)$ and $B \in \pi G \alpha - LC^*(X, \tau)$, then $A \cap B \in \pi G \alpha - LC^*(X, \tau)$.

Proof: If $A, B \in \pi G \alpha - LC^*(X, \tau)$ then by Theorem 5.2.12, there exist $\pi g \alpha$-open sets P and Q such that $A = P \cap cl(A)$ and $B = Q \cap cl(B)$. $P \cap Q$ is also $\pi g \alpha$-open. Then $A \cap B = (P \cap Q) \cap cl(A) \cap cl(B) \in \pi G \alpha - LC^*(X, \tau)$.
Proposition 5.2.21: Let A and Z be any two subsets of (X, τ) and let $A \subset Z$. If Z is regular open and $\pi \alpha$-closed in (X, τ) and if $A \in \pi \alpha$-LC* $(Z, \tau / Z)$, then $A \in \pi \alpha$-LC* (X, τ).

Proof: If $A \in \pi \alpha$-LC* $(Z, \tau / Z)$ then by Theorem 5.2.12, there is a $\pi \alpha$-open set G in $(Z, \tau / Z)$ such that $A = G \cap \text{cl}_{Z}(A)$ where $\text{cl}_{Z}(A) = Z \cap \text{cl}(A)$. By Proposition 2.2.19, G is $\pi \alpha$-open in X. We have $A = (G \cap Z) \cap \text{cl}(A) \in \pi \alpha$-LC* (X, τ).

Remark 5.2.22: The following examples show that one of the assumptions in the above theorem. That is, Z is regular open in (X, τ) cannot be removed.

Example 5.2.23: Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c, d\}, \{b, c, d\}\}$. Let $Z = A = \{a, b, d\}$. $\tau / Z = \{\emptyset, \{b\}, \{b, d\}, Z\}$ where Z is not regular open in X. Then $A \in \pi \alpha$-LC* $(Z, \tau / Z)$ but $A \notin \pi \alpha$-LC* (X, τ).

Theorem 5.2.24: Let A and Z be any two subsets of (X, τ) and let $A \subset Z$ such that Z is $\pi \alpha$-closed and regular open in X. Then

1) if $A \in \pi \alpha$-LC $(Z, \tau / Z)$, then $A \in \pi \alpha$-LC (X, τ).

2) if $A \in \pi \alpha$-LC** $(Z, \tau / Z)$, then $A \in \pi \alpha$-LC** (X, τ).

Proof: 1) Let $A \in \pi \alpha$-LC $(Z, \tau / Z)$. Then $A = G \cap F$ where G is $\pi \alpha$-open and F is $\pi \alpha$-closed in $(Z, \tau / Z)$. Then by Proposition 2.2.19, G and F are $\pi \alpha$-open and $\pi \alpha$-closed sets in (X, τ) respectively. Hence $A = G \cap F \in \pi \alpha$-LC (X, τ).

2) Let $A \in \pi \alpha$-LC** $(Z, \tau / Z)$. Then $A = G \cap F$ where G is open and F is $\pi \alpha$-closed in $(Z, \tau / Z)$. Then by Proposition 2.2.19, G is open and F is $\pi \alpha$-closed in (X, τ). Hence $A = G \cap F \in \pi \alpha$-LC** (X, τ).

Proposition 5.2.25: Let $A, B \in \pi \alpha$-LC* (X, τ). If A and B are separated in (X, τ), then $A \cup B \in \pi \alpha$-LC* (X, τ).

Proof: Since $A, B \in \pi \alpha$-LC* (X, τ) by Theorem 5.2.12, there exist $\pi \alpha$-open sets P and Q of (X, τ) such that $A = P \cap \text{cl}(A)$ and $B = Q \cap \text{cl}(B)$. Put $U = P \cap (X - \text{cl}(B))$ and $V = Q \cap (X - \text{cl}(A))$. Then U and V are $\pi \alpha$-open subsets of (X, τ). Then $A = U \cup \text{cl}(A)$,
B = V \cap \text{cl}(B), U \cap \text{cl}(B) = \phi, V \cap \text{cl}(A) = \phi \text{ hold. Consequently.}

A \cup B = (U \cup V) \cap (\text{cl}(A \cup B)) \text{ showing that } A \cup B \in \piGA-LC^*(X, \tau).

Proposition 5.2.26: Let \{Z_i; i \in A\} be a finite \pi-cover of (X,\tau) and let A be a subset of (X,\tau). If \(A \cap Z_i \in \piGA-LC^*(Z_i, \tau / Z_i)\) for each i \in A, then A \in \piGA-LC^*(X, \tau).

Proof: For each i \in A, there exist an open set U_i \in \tau and \piGA-closed set F_i of (Z_i, \tau / Z_i), such that A \cap Z_i = (U_i \cap F_i) \cap Z_i = U_i \cap (F_i \cap Z_i). Then

A = \cup \{A \cap Z_i; i \in A\} = [\cup \{U_i; i \in A\}] \cap [\cup \{Z_i \cap F_i; i \in A\}] \text{ and hence by Proposition 2.2.10, } A \in \piGA-LC^*(X, \tau).

Theorem 5.2.27: Let X, Y be topological spaces which are T_{\pi}-spaces.

i) If A \in \piGA-LC(X,\tau) and B \in \piGA-LC(Y,\sigma), then A \times B \in \piGA-LC(X \times Y, \tau \times \sigma).

ii) If A \in \piGA-LC^*(X,\tau) and B \in \piGA-LC^*(Y,\sigma), then A \times B \in \piGA-LC^*(X \times Y, \tau \times \sigma).

iii) If A \in \piGA-LC^{**}(X,\tau) and B \in \piGA-LC^{**}(Y,\sigma), then A \times B \in \piGA-LC^{**}(X \times Y, \tau \times \sigma).

Proof: i) Let A \in \piGA-LC(X,\tau) and B \in \piGA-LC(Y,\sigma).

Then there exist \piGA-open sets V, V^1 and \piGA-closed sets W, W^1 of (X,\tau) and (Y,\sigma) respectively such that A = V \cap W and B = V^1 \cap W^1. Then

A \times B = (V \cap W) \times (V^1 \cap W^1) = (V \times V^1) \cap (W \times W^1) \text{ holds and hence } A \times B \in \piGA-LC(X \times Y, \tau \times \sigma).

Proofs of (ii) and (iii) are similar to that of (i).

5.3 \piGA-LC Continuous And \piGA-LC Irresolute Functions

In this section, we define \piGA-LC continuous and \piGA-LC irresolute functions and obtain pasting Lemma for \piGA-LC** continuous functions and \piGA-LC** irresolute functions.

Definition 5.3.1: A function f:(X,\tau)\rightarrow(Y,\sigma) is called

i) \piGA-LC continuous if \(f^{-1}(V) \in \piGA-LC(X,\tau)\) for every \(V \in \sigma\).

ii) \piGA-LC*continuous if \(f^{-1}(V) \in \piGA-LC^*(X,\tau)\) for every \(V \in \sigma\).
iii) \(\pi \alpha-\text{LC}^{**} \) continuous if \(f^{-1}(V) \in \pi \alpha-\text{LC}^{**}(X,\tau) \) for every \(V \in \sigma \).

iv) \(\pi \alpha-\text{LC} \) irresolute if \(f^{-1}(V) \in \pi \alpha-\text{LC}(X,\tau) \) for every \(V \in \pi \alpha-\text{LC}(Y,\sigma) \).

v) \(\pi \alpha-\text{LC}^* \) irresolute if \(f^{-1}(V) \in \pi \alpha-\text{LC}^*(X,\tau) \) for every \(V \in \pi \alpha-\text{LC}^*(Y,\sigma) \).

vi) \(\pi \alpha-\text{LC}^{**} \) irresolute if \(f^{-1}(V) \in \pi \alpha-\text{LC}^{**}(X,\tau) \) for every \(V \in \pi \alpha-\text{LC}^{**}(Y,\sigma) \).

Proposition 5.3.2: If \(f:(X,\tau) \rightarrow (Y,\sigma) \) is \(\pi \alpha-\text{LC} \) irresolute, then it is \(\pi \alpha-\text{LC} \) continuous.

Proof: Let \(V \) be open in \(Y \). Then \(V \in \pi \alpha-\text{LC}(Y,\sigma) \). By assumption, \(f^{-1}(V) \in \pi \alpha-\text{LC}(X,\tau) \). Hence \(f \) is \(\pi \alpha-\text{LC} \) continuous.

Proposition 5.3.3: Let \(f:(X,\tau) \rightarrow (Y,\sigma) \) be a function.

1) If \(f \) is LC-continuous, then \(f \) is \(\pi \alpha-\text{LC}^* \) continuous and \(\pi \alpha-\text{LC}^{**} \) continuous.

2) If \(f \) is \(\pi \alpha-\text{LC}^* \) continuous, then \(f \) is \(\pi \alpha-\text{LC} \) continuous.

3) If \(f \) is \(\pi \alpha-\text{LC}^* \) irresolute, then \(f \) is \(\pi \alpha-\text{LC}^* \) continuous

Remark 5.3.4: Converse of the above need not be true as can be seen in the following examples.

Examples 5.3.5:

1) Let \(X = \{a,b,c\}, \tau = \{\emptyset, X, \{a\}, \{b\}\} \), \(\sigma = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\} \). Let \(f:(X,\tau) \rightarrow (X,\sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha-\text{LC}^* \) continuous and \(\pi \alpha-\text{LC}^{**} \) continuous but not LC-continuous.

2) Let \(X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{b\}, \{c,d\}, \{b,c,d\}\} \), \(\sigma = \{\emptyset, X, \{c\}, \{a,b,d\}\} \) and \(f:(X,\tau) \rightarrow (X,\sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha-\text{LC} \) continuous but not \(\pi \alpha-\text{LC}^* \) continuous since \(\{a,b,d\} \in (X,\sigma) \) but \(\{a,b,d\} \notin \pi \alpha-\text{LC}^*(X,\tau) \).

3) Let \(X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{b\}, \{c,d\}, \{b,c,d\}\} \), \(\sigma = \{\emptyset, X, \{b\}\} \) and \(f:(X,\tau) \rightarrow (X,\sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha-\text{LC}^* \) continuous but not \(\pi \alpha-\text{LC}^* \) irresolute since \(\{a, b, d\} \in \pi \alpha-\text{LC}^*(X,\sigma) \) but \(\{a, b, d\} \notin \pi \alpha-\text{LC}^*(X,\tau) \).

Proposition 5.3.6: Any map defined on a door space is \(\pi \alpha-\text{LC} \) irresolute.

Proof: Let \((X,\tau) \) be a door space and \((Y,\sigma) \) be any space. Define a map \(f:(X,\tau) \rightarrow (Y,\sigma) \). Let \(A \in \pi \alpha-\text{LC}(Y,\sigma) \). Then \(f^{-1}(A) \) is either open or closed in \((X,\tau) \). In both cases \(f^{-1}(A) \in \pi \alpha-\text{LC}(X,\tau) \). Hence \(f \) is \(\pi \alpha-\text{LC} \) irresolute.

84
Theorem 5.3.7: A topological space \((X, \tau)\) is \(\pi\text{g}\alpha\)-submaximal if and only if every function having \((X, \tau)\) as it domain is \(\pi\text{G}\alpha\)-LC*continuous.

Proof: Suppose that \(f:(X, \tau)\to(Y, \sigma)\) is a function. By Theorem 5.2.15 b), we have \(f^{-1}(V) \in P(X) = \pi\text{G}\alpha\)-LC*(\(X, \tau\)) for each open set \(V\) of \((Y, \sigma)\). Therefore \(f\) is \(\pi\text{G}\alpha\)-LC* continuous. Conversely, let every map having \((X, \tau)\) as domain be \(\pi\text{G}\alpha\)-LC* continuous. Let \(Y = \{0, 1\}\) be the Sierpinski space with topology \(\sigma = \{Y, \phi, \{0\}\}\). Let \(V\) be a subset of \((X, \tau)\) and \(f:(X, \tau)\to(Y, \sigma)\) be a function defined by \(f(x) = 0\) for every \(x \in V\) and \(f(x) = 1\) for every \(x \in \bar{V}\). By assumption, \(f\) is \(\pi\text{G}\alpha\)-LC* continuous and hence \(f^{-1}\{0\} = V \in \pi\text{G}\alpha\)-LC*(\(X, \tau\)). Therefore we have \(P(X) = \pi\text{G}\alpha\)-LC*(\(X, \tau\)) and by Theorem 5.2.15 b), \((X, \tau)\) is \(\pi\text{g}\alpha\)-submaximal.

Proposition 5.3.8: If \(f:(X, \tau)\to(Y, \sigma)\) is \(\pi\text{G}\alpha\)-LC** continuous and a subset \(B\) is regular open \(, \pi\text{g}\alpha\)-closed in \((X, \tau)\), then the restriction of \(f\) to \(B\) say \(f/B:(B, \tau/B)\to(Y, \sigma)\) is \(\pi\text{G}\alpha\)-LC** continuous.

Proof: Let \(V\) be an open set of \((Y, \sigma)\). Then \(f^{-1}(V) = G \cap F\) for some open set \(G\) and \(\pi\text{g}\alpha\)-closed set \(F\) of \((X, \tau)\). Now \(G \cap B \in \tau/B\) and \((F \cap B)\) is a \(\pi\text{g}\alpha\)-closed subset of \((B, \tau/B)\). But \((f/B)^{-1}(V) = (G \cap B) \cap (F \cap B)\). Hence \((f/B)^{-1}(V) \in \pi\text{G}\alpha\)-LC**(\(B, \tau/B\)). This implies that \(f/B\) is \(\pi\text{G}\alpha\)-LC** continuous.

We recall the definition of the combination of two functions: Let \(X = A \cup B\) and \(f : A \rightarrow Y\) and \(h : B \rightarrow Y\) be two functions. We say that \(f\) and \(h\) are compatible if \(f \upharpoonright (A \cap B) = h \upharpoonright (A \cap B)\). If \(f: A \rightarrow Y\) and \(h: B \rightarrow Y\) are compatible, then the function \(f \vee h : X \rightarrow Y\) defined as \((f \vee h)(x) = f(x)\) for every \(x \in A\), \((f \vee h)(x) = h(x)\) for every \(x \in B\) is called the combination of \(f\) and \(h\).

Pasting Lemma for \(\pi\text{G}\alpha\)-LC** continuous (resp. \(\pi\text{G}\alpha\)-LC**-irresolute) functions.

Theorem 5.3.9: Let \(X = A \cup B\), where \(A\) and \(B\) are \(\pi\text{g}\alpha\)-closed and regular open subsets of \((X, \tau)\) and \(f : (A, \tau/A) \rightarrow (Y, \sigma)\) and \(h : (B, \tau/B) \rightarrow (Y, \sigma)\) be compatible functions.

a) If \(f\) and \(h\) are \(\pi\text{G}\alpha\)-LC** continuous, then \((f \vee h) : X \rightarrow Y\) is \(\pi\text{G}\alpha\)-LC** continuous.

b) If \(f\) and \(h\) are \(\pi\text{G}\alpha\)-LC** irresolute, then \((f \vee h) : X \rightarrow Y\) is \(\pi\text{G}\alpha\)-LC** irresolute.

85
Proof :a) Let $V \in \sigma$. Then $(f \vee h)^{-1}(V) \cap A = f^{-1}(V)$ and $(f \vee h)^{-1}(V) \cap B = h^{-1}(V)$. By assumption, $(f \vee h)^{-1}(V) \cap A \in \pi \text{Ga-LC}**(A, \tau /A)$ and $(f \vee h)^{-1}(V) \cap B \in \pi \text{Ga-LC}**(B, \tau /B)$. Therefore by Proposition 5.2.26, $(f \vee h)^{-1}(V) \in \pi \text{Ga-LC}** (X, \tau)$ and hence $f \vee h$ is $\pi \text{Ga-LC}**$continuous.

b) Proof is similar to that of a).

Next we have the theorem concerning the composition of functions.

Theorem 5.3.10 : Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two functions. Then
a) $g \circ f$ is $\pi \text{Ga-LC}$ irresolute if f and g are $\pi \text{Ga-LC}$ irresolute.
b) $g \circ f$ is $\pi \text{Ga-LC}*$ irresolute if f and g are $\pi \text{Ga-LC}*$ irresolute.
c) $g \circ f$ is $\pi \text{Ga-LC}**$ irresolute if f and g are $\pi \text{Ga-LC}**$ irresolute.
d) $g \circ f$ is $\pi \text{Ga-LC}$ continuous if f is $\pi \text{Ga-LC}$ irresolute and g is $\pi \text{Ga-LC}$ continuous.
e) $g \circ f$ is $\pi \text{Ga-LC}*$ continuous if f is $\pi \text{Ga-LC}*$ continuous and g is $\pi \text{Ga-LC}$ continuous.
f) $g \circ f$ is $\pi \text{Ga-LC}$ continuous if f is $\pi \text{Ga-LC}$ continuous and g is continuous.
g) $g \circ f$ is $\pi \text{Ga-LC}*$ continuous if f is $\pi \text{Ga-LC}*$ irresolute and g is continuous.
h) $g \circ f$ is $\pi \text{Ga-LC}**$ continuous if f is $\pi \text{Ga-LC}**$ irresolute and g is $\pi \text{Ga-LC}**$ continuous.

Definition 5.3.11 : A function $f: (X, \tau) \to (Y, \sigma)$ is called sub $\pi \text{Ga-LC}*$ continuous if there exists a basis B for (Y, σ) such that $f^{-1}(U) \in \pi \text{Ga-LC}*(X, \tau)$ for each $U \in B$.

Proposition 5.3.12 : Let $f: (X, \tau) \to (Y, \sigma)$ be a function.
a) If f is sub-$\pi \text{Ga-LC}*$continuous if and only if there is a subbasis C of (Y, σ) such that $f^{-1}(U) \in \pi \text{Ga-LC}*(X, \tau)$ for each $U \in C$.
b) If f is sub-LC-continuous, then f is sub-$\pi \text{Ga-LC}*$continuous.

Proof :a) By assumption, there exists a basis B for (Y, σ) such that $f^{-1}(U) \in \pi \text{Ga-LC}*(X, \tau)$ for each $U \in B$. Since B is also a subbasis for (Y, σ), the proof is obvious.

Conversely, for a subbasis C, let $C_\delta = \{ A \subset Y : A$ is an intersection of finitely many sets belonging to $C \}$. Then C_δ is a basis for (Y, σ). For $U \in C_\delta$, $U = \cap \{ A : A \in \forall \}$ where
A is a finite set. By assumption and Proposition 5.2.20, we have
\[f^{-1}(U) = \bigcap \{ f^{-1}(F_i) : i \in \Lambda \} \in \pi G\alpha -LC^*(X,\tau). \]

b) follows from the Definition 5.3.11 and the fact that every LC (X,\tau) is \(\pi G\alpha -LC^*(X,\tau) \).

Remark 5.3.13: Converse of Proposition 5.3.12 a) is not true as seen in the following example.

Example 5.3.14: Let \(X = Y = \{a,b,c\} \), \(\tau = \{\emptyset, X,\{a\}\} \) and \(\sigma \) be the topology induced by a base \(B \) of \(Y \). Let \(f: (X,\tau) \to (Y,\sigma) \) be the identity function. If \(B = \{Y,\{c\}\} \), then \(f \) is sub-\(\pi G\alpha -LC^* \) continuous but not sub LC-continuous since \(f^{-1}(\{c\}) = \{c\} \notin LC(X,\tau) \).

5.4 Decomposition Of \(\pi g\alpha \)-Continuity

In this section, we introduce the notions of \(C_\pi \)-sets, \(C_{\pi^*} \)-sets, \(K_\pi \)-sets and \(K_{\pi^*} \)-sets to obtain decompositions of \(\pi g \)-continuity and \(\pi g\alpha \)-continuity.

Definition 5.4.1: A subset \(S \) of \((X,\tau) \) is called a
1. \(C_\pi \)-set if \(S = G \cap F \) where \(G \) is \(\pi g \)-open and \(F \) is a \(t \)-set
2. \(C_{\pi^*} \)-set if \(S = G \cap F \) where \(G \) is \(\pi g \)-open and \(F \) is a \(\alpha^* \)-set.
3. \(K_\pi \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\alpha \)-open and \(F \) is a \(t \)-set.
4. \(K_{\pi^*} \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\alpha \)-open and \(F \) is a \(\alpha^* \)-set.

Proposition 5.4.2:
1. Every \(B \)-set is a \(C_\pi \)-set.
2. Every \(B^* \)-set is a \(C_{\pi^*} \)-set.
3. Every \(C \)-set is a \(C_\pi \)-set.
4. Every \(C^* \)-set is a \(C_{\pi^*} \)-set.
5. Every \(C_{\pi} \)-set is a \(C_{\pi^*} \)-set.
6. Every \(C_{\pi^*} \)-set is a \(K_\pi \)-set.
7. Every C^π-set is a K^π-set.

8. Every C^π-set is a C_r^π-set.

9. Every C^π-set is a C_r^\ast-set.

10. Every C^π-set is a K^\ast_r-set.

11. Every K^π-set is a K^π_n-set.

Remark 5.4.3: Converse of the above need not be true as seen in the following examples.

Example 5.4.4: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$. Let $A = \{a, c\}$.

Then A is a C_n-set and C^π-set. But A is neither a B-set nor a C-set.

Example 5.4.5: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$. Let $A = \{c, d\}$. Then

A is a C^π-set, C_r-set, C_r^\ast-set and K^π-set. But A is neither a C_n-set nor a K^π_n-set.

Example 5.4.6: Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{d\}, \{a, d\}\}$. Let

$A = \{a, b, d\}$. Then A is a K^π_n-set and K^π-set. But A is neither C^π-set, nor C_r^\ast-set, nor

C^π_n-set, nor C-set.

Remark 5.4.7: K^π_n-set and C_r^π-set are independent concepts follows from Examples 5.4.6 and 5.4.5 respectively.

Remark 5.4.8: K^π_n-set and C_r^π-set are independent concepts follows from Examples 5.4.6 and 5.4.5 respectively.

Proposition 5.4.9: If S is a $\pi\alpha$-open set, then

i) S is a K^π_n-set.

ii) S is a K^π-set.

Remark 5.4.10: Converse of the above need not be true as seen in the following example.
Example 5.4.11: Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{c\}$ is a K_π-set and a K_π^*-set but not $\pi\text{g}\alpha$-open.

The above discussions are summarized in the following diagram:

Proposition 5.4.12: Let A and B be K_π-sets in X. Then $A \cap B$ is a K_π-set in X.

Proof: Since A, B are K_π-sets, $A = G_1 \cap F_1$, $B = G_2 \cap F_2$ where G_1, G_2 are $\pi\text{g}\alpha$-open and F_1, F_2 are t-sets. Since intersection of two $\pi\text{g}\alpha$-open sets is $\pi\text{g}\alpha$-open and intersection of t-sets is a t-set, it follows that $A \cap B$ is a K_π-set in X.

Remark 5.4.13: a) The Union of two K_π-sets need not be a K_π-set.

b) Complement of a K_π-set need not be a K_π-set.

Example 5.4.14: In Example 5.4.5

a) $A = \{a, c\}$ and $B = \{d\}$ are K_π-sets. $A \cup B = \{a, c, d\}$ is not a K_π-set.
b) $X - \{a,c\} = \{b,d\}$ is not a K_π-set.

Proposition 5.4.15: Let A and B be C_π-sets in X. Then $A \cap B$ is a C_π-set in X.

Remark 5.4.16: The union of two C_π-sets need not be a C_π-set and the complement of a C_π-set need not be a C_π-set follows from Example 5.4.14.

Definition 5.4.17: A function $f: X \rightarrow Y$ is said to be

i) C_π-continuous if $f^{-1}(V)$ is a C_π-set for every open set V in Y.

ii) K_π-continuous if $f^{-1}(V)$ is a K_π-set for every open set V in Y.

iii) C_π^*-continuous if $f^{-1}(V)$ is a C_π^*-set for every open set V in Y.

iv) K_π^*-continuous if $f^{-1}(V)$ is a K_π^*-set for every open set V in Y.

Proposition 5.4.18:

i) Every C_π-continuous function is C_π^*-continuous.

ii) Every C_π^*-continuous function is K_π-continuous.

iii) Every K_π-continuous function is K_π^*-continuous.

iv) Every C_π^*-continuous function is K_π^*-continuous.

Proof: Follows from Proposition 5.4.2 and Definition 5.4.17.

Remark 5.4.19: Converse of the above need not be true as can be seen from the following examples.

Example 5.4.20: a) Let $X = \{a,b,c,d\}$, $\tau = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}$, $\sigma = \{\phi,X,\{c,d\}\}$ and $f:(X,\tau) \rightarrow (X,\sigma)$ be the identity mapping. Then f is C_π-continuous but not C_π^*-continuous.

b) Let $X = \{a,b,c,d\}$, $\tau = \{\phi,X,\{a\},\{c,d\},\{a,c,d\},\{d\},\{a,d\}\}$, $\sigma = \{\phi,\{a,b,d\},X\}$ and $f:(X,\tau) \rightarrow (X,\sigma)$ be the identity mapping. Then f is K_π-continuous but not C_π^*-continuous.
c) Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$, $\sigma = \{\emptyset, \{c\}, \{c, d\}, X\}$ and $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is K_{π^*}-continuous but not K_{π}-continuous.

d) Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c, d\}, \{d\}, \{a, d\}\}$, $\sigma = \{\emptyset, \{a\}, \{a, b, d\}, X\}$ and $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is K_{π^*}-continuous but not C_{π^*}-continuous.

Remark 5.4.21: The above discussions are summarized in the following implications:

\[
\begin{align*}
C_{\pi^*}-continuity & \implies C_{\pi^*}-continuity \\
\downarrow & \downarrow \\
K_{\pi^*}-continuity & \implies K_{\pi^*}-continuity
\end{align*}
\]

Definition 5.4.22: A map $f : X \to Y$ is said to be

i) K_{π}-open if $f(U)$ is a K_{π}-set in Y for each open set U in X.

ii) C_{π}-open if $f(U)$ is a C_{π}-set in Y for each open set U in X.

iii) C_{π^*}-open if $f(U)$ is a C_{π^*}-set in Y for each open set U in X.

iv) K_{π^*}-open if $f(U)$ is a K_{π^*}-set in Y for each open set U in X.

Definition 5.4.23: A map $f : X \to Y$ is said to be

i) contra- K_{π}-continuous if $f^{-1}(V)$ is a K_{π}-set for every closed set V in Y.

ii) contra- C_{π}-continuous if $f^{-1}(V)$ is a C_{π}-set for every closed set V in Y.

iii) contra- C_{π^*}-continuous if $f^{-1}(V)$ is a C_{π^*}-set for every closed set V in Y.

iv) contra- K_{π^*}-continuous if $f^{-1}(V)$ is a K_{π^*}-set for every closed set V in Y.

Lemma 5.4.24: A subset A of a space X is

a) πg-open if and only if $F \subseteq \text{int}(A)$ whenever F is π-closed and $F \subseteq A$ [42].

b) $\pi g p$-open if and only if $F \subseteq \text{pint}(A)$ whenever F is π-closed and $F \subseteq A$ [146].

Theorem 5.4.25: A subset S of X is

a) πg-open if and only if it is both $\pi g p$-open and a C_{π}-set in X.

91
b) πg-open if and only if it is both πgα-open and a Cπ-set in X.

c) πg-open if and only if it is both πgα-open and a Cπ-set in X.

Sufficiency: Assume that S is both πgp-open and a Cπ-set in X. By assumption, S is a Cπ-set in X implies S = A ∩ B where A is πg-open and B is a t-set. Let F be a π-closed set such that F ⊂ S. Since S is πgp-open, F ⊂ S implies F ⊂ pint(S) ⊂ int(B) Then A is πg-open and F ⊂ S ⊂ A implies F ⊂ int(A). Hence

F ⊂ int(A) ∩ int(B) = int(A ∩ B) = int(S). Hence S is πg-open.

b) Necessity: Obvious

Sufficiency: Let S be both πgα-open and a Cπ-set in X. Since S is a Cπ-set, S = A ∩ B where A is πg-open and B is a t-set. Let F be a π-closed set such that F ⊂ S. Since S is πgα-open, F ⊂ S implies F ⊂ αint(S) ⊂ int(B). Then A is πg-open and F ⊂ S ⊂ A implies F ⊂ int(A). Hence F ⊂ int(A) ∩ int(B) = int(A ∩ B) = int(S).

c) Necessity: Obvious.

Sufficiency: Assume S is both πgα-open and a Cπ*-set in X. Since S is a Cπ*-set, S = A ∩ B where A is πg-open and B is α*-set in X. Let F be a π-closed set such that F ⊂ S. Since S is πgα-open, F ⊂ S implies F ⊂ αint(S) ⊂ int(B). Then A is πg-open and F ⊂ S ⊂ A implies F ⊂ int(A). Hence F ⊂ int(A) ∩ int(B) = int(A ∩ B) = int(S).

Theorem 5.4.26: A mapping f : X → Y is

a) πg-continuous if and only if it is both πgp-continuous and Cπ-continuous.

b) πg-continuous if and only if it is both πgα-continuous and Cπ-continuous.

c) πg-continuous if and only if it is both πgα-continuous and Cπ*-continuous.

Proof: Follows from Theorem 5.4.25.

Theorem 5.4.27: A map f : X → Y is

a) πg-open if and only if it is both πgp-open and Cπ-open.

b) πg-open if and only if it is both πgα-open and Cπ-open.

c) πg-open if and only if it is both πgα-open and Cπ*-open.
Proof: Follows from Theorem 5.4.25.

Theorem 5.4.28: A mapping \(f: X \to Y \) is
a) contra-\(\pi g \)-continuous if and only if \(f \) is both contra-\(\pi gp \)-continuous and contra-\(C_{\pi} \)-continuous .
b) contra-\(\pi g \)-continuous if and only if \(f \) is both contra-\(\pi g \alpha \)-continuous and contra-\(C_{\pi} \)-continuous.
c) contra-\(\pi g \)-continuous if and only if \(f \) is both contra-\(\pi g \alpha \)-continuous and contra-\(C_{\pi}^{*} \)-continuous.

Proof: Follows from Theorem 5.4.25.

Lemma 5.4.29: [155] Let \(A \) and \(B \) be subsets of a space \(X \). If \(B \) is an \(\alpha * \) set, then
\[a\text{int}(A \cap B) = a\text{int}(A) \cap \text{int}(B). \]

Theorem 5.4.30: A subset \(S \) of \(X \) is
a) \(\pi g \alpha \)-open if and only if it is both \(\pi g \)-open and a \(K_{\pi} \)-set.
b) \(\pi g \alpha \)-open if and only if it is both \(\pi gp \)-open and a \(K_{\pi}^{*} \)-set.

Proof: a) Necessity: Let \(S \) be \(\pi g \alpha \)-open. For any subset \(A \) of \(X \),
\[\text{int}(A) \subseteq a\text{int}(A) \subseteq \text{pint}(A). \]
Let \(F \) be a \(\pi \)-closed set such that \(F \subseteq S \). Since \(S \) is \(\pi g \alpha \)-open, \(F \subseteq S \) implies \(F \subseteq a\text{int}(S) \subseteq \text{pint}(S) \) which implies \(S \) is \(\pi gp \)-open. Since \(S = S \cap X \) where \(S \) is \(\pi g \alpha \)-open and \(X \) is a \(t \)-set, \(S \) is a \(K_{\pi} \)-set.

Sufficiency: Let \(S \) be both \(\pi gp \)-open and a \(K_{\pi} \)-set. Since \(S \) is a \(K_{\pi} \)-set, \(S = A \cap B \) where \(A \) is \(\pi g \alpha \)-open and \(B \) is a \(t \)-set. Let \(F \) be a \(\pi \)-closed set such that \(F \subseteq S \). Since \(S \) is \(\pi gp \)-open, \(F \subseteq S \) implies \(F \subseteq \text{pint}(S) = S \cap \text{cl}(S) \subseteq \text{int}(B) \). Then \(A \) is \(\pi g \alpha \)-open and \(F \subseteq S \subseteq A \) implies \(F \subseteq a\text{int}(A) \). Therefore \(F \subseteq a\text{int}(A) \cap \text{int}(B) \subseteq a\text{int}(A \cap B) \subseteq a\text{int}(S) \).

b) Proof: Similar as that of (a).

Theorem 5.4.31: A map \(f: X \to Y \) is
a) \(\pi g \alpha \)-continuous if and only if it is both \(\pi gp \)-continuous and \(K_{\pi} \)-continuous.
b) \(\pi g\alpha \)-continuous if and only if it is both \(\pi g p \)-continuous and \(K_{\pi^*} \)-continuous

Proof: Follows from Theorem 5.4.30.

Theorem 5.4.32: A map \(f: X \rightarrow Y \) is

a) \(\pi g\alpha \)-open if and only if it is both \(\pi g p \)-open and \(K_{\pi} \)-open

b) \(\pi g\alpha \)-open if and only if it is both \(\pi g p \)-open and \(K_{\pi^*} \)-open

Proof: Follows from Theorem 5.4.30.

Theorem 5.4.33: A map \(f: X \rightarrow Y \) is

a) contra-\(\pi g\alpha \)-continuous if and only if it is both contra-\(\pi g p \)-continuous and contra-\(K_{\pi} \)-continuous.

b) contra-\(\pi g\alpha \)-continuous if and only if it is both contra-\(\pi g p \)-continuous and contra-\(K_{\pi^*} \)-continuous.

Proof: Follows from Theorem 5.4.30

\[\star \star \star \]