CHAPTER 5

EFFECTS OF PAIR PROGRAMMING ON LEARNING EFFICIENCY

5.1 Introduction

Pair programming is one of the important practices of the lightweight development methodology, namely XP. The pair programming refers to the practice of two developers working together in a single computer terminal to develop and test programs. The roles of pair programming are driver and navigator where the driver writes the code and the navigator helps the driver and looks for errors (Beck, 2000).

This chapter explains the research work done in evaluating the effects of pair programming on learning process. Section 5.2 introduces the research problem. The adopted research method is briefly explained in section 5.3. In addition, it explains the reasons for conducting a pilot study. Section 5.4 explains the pilot study. Section 5.5 describes the study conducted to evaluate the learning efficiency. It includes the description of experimental design, threats, data collection procedures and the execution of the experiment. The results of the experiment are presented in section 5.6. Section 5.7 discusses the implication of the results. A brief summary is given in section 5.8.

5.2 Problem Definition

Software development is a learning process (developers cannot program faster than they can learn) (Dudziak, 2000). The efficiency of the learning process can be measured using the following parameters:

1. **Elapsed Time (Duration):** It is defined as the total development time elapsed between the start and completion of programming task including debugging.
2. **Design Quality**: The extent to which the design satisfies the completeness and correctness of the requirements.

3. **Acquired Knowledge**: It indicates individual's gained knowledge and programming skills.

It is argued in literature that pair programming, an important practice of XP, enhances the learning efficiency. Even though many reasons were stated for increase in learning efficiency by the use of pair programming, the research is to be conducted to evaluate the effectiveness of pair programming quantitatively. Prior researches on pair programming have been carried out in two directions. In one direction, the researchers conducted surveys and collected opinions of the respondents about pair programming and analyzed its impact (Melnik and Maurer, 2002; Sanders, 2001; Williams and Kessler, 2000a; Peter, 2002; Declue, 2003; Thomas et al., 2003; Keenan, 2002a). This kind of study is called as attitude study. In the other direction, the researchers analyzed the performance of the research participants through formal experiments when they adopt pair programming for completing the programming tasks. (Nosek, 1998; Williams and Kessler, 2000a; McDowell et al., 2002) (Nawrocki and Wojciechowski, 2001; Tomayko, 2002b (The above research works are discussed in section 2.5.3). These studies on pair programming have the following limitations:

1. **Elapsed time (duration)**: Pair programming practice of XP suggests the rotation of pair partners once or twice in a day. The planning game suggests that a user story is divided into task. Viewing from these perspectives, a pair works for about 3 hours to complete a programming task. Most of the prior research works was carried out in academic environments and pair programming was evaluated in the context of two or three laboratory exercises that were spread over the entire semester. Such exercises are called long duration exercises. Even though, the empirical evidence supports the effectiveness of pair programming in laboratory classes for long-duration exercises, the extent to which this pair programming is beneficial in programming tasks of short duration is to be investigated. There are few reports on the evaluation of the effects of pair programming on short-duration programming tasks (Nosek, 1998; Nawrocki and
However, these investigations have not included the debugging in evaluating the efficiency of the pair programming in their experiments.

2. **Design Quality**: Software design plays an important role in software development. Williams and Kessler (2000a) compared the design quality between pair programming and traditional method groups by measuring the length of the code to implement the same functionality. This measure is generally not considered as an effective design quality measure. In another report, Succi (2001) proposed the use of CK metric suits to compare design aspects of the resulting software products and defect behavior to assess the benefits of the pair programming practice. Thus the effectiveness of pair programming on design quality has not been explored effectively so far and it is to be evaluated. Out of many quality factors of design (Pressman 2001), the following are the important factors to be considered for evaluating the learning efficiency:

 a) Correctness (the extent to which the design represents the requirements correctly).

 b) Completeness (the extent to which the design represents the requirements completely).

3. **Acquired Knowledge**: In most of the previous research works, the effectiveness of pair programming was evaluated by measuring the characteristics of the products (computer programs) that were developed by the research participants. However, to prove that pair programming is an effective learning methodology, the improvement in individual’s subject knowledge and programming skills have to be measured. Only very few attempts have been made to measure the individual performance (Mcdowell et al., 2002; Williams et al., 2002) in the academic environment. The results of the above experiments were contradicting with each other.

Hence, it is necessary to conduct a study to evaluate the effects of pair programming on learning efficiency in the context of short-duration programming tasks.
5.3 Research Approach

In the present study, the following three parameters are considered as learning efficiency: *Elapsed Time*, *Design Quality* and *Acquired Knowledge*. Formal experiment is chosen as investigation approach due to the advantages associated with the approach (Fenton and Pfleeger, 1996; Deligiannis et al., 2001). It was decided to conduct the formal experiment using students of Department of Computer Science & Engineering and Information Technology, Pondicherry Engineering College, in their regular laboratory classes. The students have to complete programming tasks (laboratory exercises), which approximately require three hours for completion. These programming tasks are generally referred as short-duration laboratory exercises. The focus of the present study was to compare the learning efficiency of the students when they adopt pair programming with that of traditional method for doing short-duration laboratory exercises. Here, the traditional-method is referring to *solo programming* where only one student is involved in the development of a program for a laboratory exercise. The formal experiments are to be conducted to validate the following proposed hypothesis:

Hypothesis 1: *Elapsed time for completing the laboratory exercises is less when pair programming is used than that of traditional method.*

Hypothesis 2: *The quality of design for laboratory exercises is better when the pair programming is adopted that of traditional method.*

Hypothesis 3: *The subject knowledge and programming skill that are gained by programmer are higher when pair programming is used than that of traditional method.*

The above hypotheses are proposed based on the theoretical explanation on the benefits of pair programming and from the results of the earlier research on pair programming (The detailed discussion is available in section 2.5). In all of the above hypotheses, a laboratory exercise is considered to be of three hours' duration without a break and is done under the supervision of a laboratory instructor.
Pilot Study

Since the experimentation is to be carried out in regular classes, it is also necessary to know the following from the students' point of view:

1. Willingness to adopt pair programming.
2. Kind of pair partners who are required to form a pair for effective learning.

These issues represent the attitude of students towards pair programming. Hence, pilot study is conducted with small groups of students to know the attitude of the students towards pair programming. Henceforth, in this report the pilot study will be called as attitude study.

5.4 Attitude Study

The attitude study was conducted to find the attitude of students towards pair programming. This was done by collecting opinions from students on important issues of pair programming. The next section clearly defines the objectives of the attitude study.

5.4.1 Objectives of Attitude Study

(i) To Obtain Willingness of Students to Adopt Pair programming: Traditionally, the students adopt solo programming for doing exercises in laboratory courses. The introduction of pair programming as new learning methodology, radically changes the way in which students do the laboratory exercises. Since the students are important elements in evaluation of a new learning methodology, it is necessary to obtain their willingness in adopting it. Some of the previous research works reveal that the students' opinion on adopting the pair programming were obtained in the context of long duration exercises (Melnik and Maurer, 2002; Sanders 2001; Williams and Kessler, 2000a; Peter, 2002; Declue, 2003; Thomas et al., 2003; Keenan, 2002a). Here it is needed to obtain students' willingness to adopt pair programming in doing short-duration exercises.

(ii) To Identify the Partner of a Pair: In pair programming, the students have to interact closely. In such situations, composition for a pair plays major role for
the effective learning (Dick and Zarnett, 2002; Williams and Kessler, 2000c; Hayes, 2001). The students’ choice of the pair partner depends on many social factors such as the personality, academic achievement, gender and mother tongue of the other partner. Out of these factors, the gender and academic achievement level of the other partner are important factors. Hence, it is necessary to obtain the students view on the composition of a pair for effective learning with respect to the following:

1. Academic achievement level of students participating in a pair.
2. Gender of the students participating in a pair.

5.4.2 Attitude Study Method

Subjects

The study was conducted at the Department of Computer Science & Engineering and Information Technology, Pondicherry Engineering College. Twenty-two students (13 boys and 9 girls) were from Master of Computer Application (M.C.A) course and 62 (45 boys and 17 girls) students were from Bachelor of Technology (B.Tech) course.

Data Collection

In order to provide an exposure to pair programming, the selected students were asked to adopt pair programming to do two laboratory exercises. The students for each pair were assigned randomly except that no pair was repeated with same members for doing the two exercises. The exercise for each of the laboratory classes was announced only at the beginning of the laboratory classes. The pairs had to develop and test the programs in the laboratory itself. At the end of the second exercise, questionnaires were distributed to all and were asked to fill the questionnaire individually (not pair wise). The questions in the questionnaire were framed to collect the opinion of the students on pair programming. The questionnaire is given below:
Questionnaire

Please tick only one answer for each question.

1. If you think the pair programming improves the effective learning, do you want it to be introduced in the laboratory as a way of doing lab experiments?
 a) Yes b) No

 Answer the following three questions (Q. No. 2 and 3) by assuming that the pair programming is introduced in your regular laboratory classes:

2. You learn more through pair programming if your partner being of
 a) Same academic achievement level as yours
 b) Better academic achievement level than yours
 c) Less academic achievement level than yours
 d) Anybody, because the academic achievement level of partner specifically does not contribute to the learning

3. The learning will be more effective if the pair is formed with persons of
 a) Same gender
 b) Different gender
 c) Any gender, because the selection of gender specifically does not contribute to the learning

5.4.3 Data Analysis of Attitude Study

The data were collected from the filled-in questionnaires. The collected data are presented in table D.1 in Appendix D. The data were analyzed using percentages. The results are presented graphically in figure 5.1 (a) to 5.1 (c).
5.4.4 Findings of Attitude Study

(i) Students are willing to adopt pair programming for the laboratory classes.

(ii) Students prefer partners with same or higher academic achievement level.

(iii) Students prefer pair programming with the partners of the same gender.
The findings of the attitude study encouraged to conduct further experiments to find the effects of pair programming on learning efficiency. In addition, the results of the attitude study helped to assign pair partners in a pair in the formal experiment. The formal experiment and the results are explained in the subsequent sections.

5.5 Experiment

5.5.1 Experimental Design

Variables

Independent Variable: The independent variables represent the cause for the effect in any experiment. The effect in the present study is learning efficiency and the conjectured cause is the learning methodology. Thus, the independent variable for the study is learning methodology. The independent variable can be manipulated in three different ways of manipulating the independent variables namely *presence or absence of technique, amount technique and type technique* (Johnson and Christensen, 2003). For this experiment, the *type technique* is chosen as it the present our problem. The two types of independent variables namely pair programming and traditional method (solo programming) was considered for experiment.

Dependent Variables: Dependent variables represent the effects that are specified in the hypotheses. The effects that are specified in the hypothesis and the corresponding dependent variables are given in table 5.1.

<table>
<thead>
<tr>
<th>The effects that are specified in the research hypotheses</th>
<th>Name of dependent variable of experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1: Elapsed time.</td>
<td>Elapsed Time: The time taken to complete an exercise was measured. This was measured in minutes. The time taken to complete an exercise was attributed to the pair in the pair programming group and it was attributed to the individual student in the traditional method group.</td>
</tr>
</tbody>
</table>

130
Hypothesis 2: Quality of design for laboratory exercises.

Design Marks: The design document for the laboratory exercise was evaluated and awarded marks. The design was evaluated for a maximum of 10 marks. The *design marks* for a laboratory exercise was awarded to a pair in the pair programming group whereas it was awarded to each individual student in the traditional method group.

Hypothesis 3: Subject knowledge and programming skills that are gained by the individual students

Test Marks: The students in both groups were asked to take up a test individually after completing the exercise and awarded marks. The test was of both objective and descriptive type questions for 20 marks and conducted for a period of 30 minutes.

Apart from these dependent variables, *cumulative percentage of marks* for each student was also obtained. The *cumulative percentage of marks* is computed by the total marks scored in all subjects up to the semester in which a student is studying divided by total number of subjects. The computed fraction is represented as a percentage. This *cumulative percentage of marks* was used to verify the equivalence of two groups and to verify the existence of a covariate. A covariate is a variable whose effect has not been studied but it influences the outcome of an experiment (Boniface, 1995).

Quantification of Learning Efficiency: The improvement in learning efficiency (if any) of the pair programming group compared to that of the traditional method group is quantified by adopting the following steps:

1. The improvement in *design marks* (if any) due to the adoption of pair programming is expressed as a percentage difference between the mean values of *design marks* of pair programming and traditional method. In the same way, the improvements in elapsed time (duration) and test marks are to be computed.

2. Weights are assigned to the three values (computed in step 1) as follows: Weights of 20%, 60% and 20% are assigned to the improvement of *design*
marks, elapsed time and test marks respectively. The higher weight is assigned to elapsed time as it involves the coding and testing skills. The weighing scheme is based on the evaluation pattern that is generally adopted in evaluating the students in the final semester examinations.

3. The improvement in learning efficiency is computed as shown below:

\[
\text{The improvement in learning efficiency} = \\
(\text{Improvement of elapsed time in percentage } \times 60) + (\text{Improvement of design marks in percentage } \times 20) + (\text{Improvement of test marks in percentage } \times 20)) / (20+60+20).
\]

Equation 5.1

Design

We used the two-group single factor post-test-only design (Trochim, 2000). The overview of the experimental design is given in table 5.2. The selected students from the sampling process were randomly assigned to two different groups. Hence, the two groups were equivalent in all respects. The two groups were administered two different types of learning methodology: traditional method and pair programming. The students in the traditional method group were asked to work individually and the students in the pair programming group were asked to work in pairs.

In pair programming, programmers have to interact closely. In such a situation, the composition of pair plays a major role for effective learning. In software industry the success of pair programming depends on the personality traits of pair partners (Sanders, 2001; Dick and Zarnett, 2002; Hayes, 2001a). Even in academic environment, choosing of pair partner plays a major role for effective learning. The random assignment of the partners to a pair may lead to an incompatible pair and it may pose an internal validity threat to the present experiment. In order to avoid this internal validity threat, the students were asked to form pairs based on the findings of the attitude study (Section 5.4.4).
Subjects: The population concerned for this study includes all the students who had software oriented laboratory subjects such as Programming Languages, Internet Programming, Database Programming and System programming laboratories. Owing to the practical difficulties, the study was restricted only within the Department of Computer Science & Engineering and Information Technology, Pondicherry Engineering College, Pondicherry, India. The department offers B.Tech (Bachelor of Technology) and M.C.A (Master of Computer Applications) courses. The students were from different parts of the country speaking different languages. The medium of instruction is English. The laboratory exercises for these students are of three hours duration. The students were divided into batches (around 22 students per batch) to do laboratory exercises.

Sampling: The process of selecting students from the original population, to participate in the experiments is known as sampling. For the present problem, quota sampling (Johnson and Christensen, 2003), which is a non-random sampling technique. It involves setting of quotas and then using convenience sampling to obtain those quotas. The convenience sampling (Johnson and Christensen, 2003) simply involves using the people who are the most available or the most conveniently selected. Based on the above method of sampling students were selected to participate in the experiments as shown in table 5.3.
Table 5.3. Selected students from sampling process

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
<th>Number of batches</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Tech</td>
<td>First</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td>5</td>
<td>96</td>
</tr>
<tr>
<td>M.C.A</td>
<td>First</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10</td>
<td>214</td>
</tr>
</tbody>
</table>

5.5.2 Experiment Instrumentation and Preparation

The activities concerned with the preparation of the experiment including the preparation of instruments are described below:

1. The selected batches of students were given a lecture about pair programming for about an hour. In the lecture, students were taught about the roles of pair programming. They were also asked to practice pair programming for one laboratory session before carrying out the actual experiment.

2. The test cases for the exercises were finalized by the laboratory instructor.

3. The laboratory exercises that were conducted for the present study were framed as shown in table 5.4. The selected students were assigned different exercises, based on the course and the year of study. The assignment of different questions rather than the same question to the students posed an internal validity threat to experiment. However, this threat was foreseen and handled as explained in section 5.5.4.

4. The question papers (objective and descriptive) were prepared for conducting a test. The questions were coined in such a way to test the knowledge gained in the subject and programming skills.
Table 5.4 Laboratory exercises conducted

<table>
<thead>
<tr>
<th>Course and the year of study</th>
<th>Number of batches</th>
<th>Laboratory exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Tech, First year</td>
<td>3 Batches</td>
<td>Array operations in C language</td>
</tr>
<tr>
<td>B.Tech, Second year</td>
<td>3 Batches</td>
<td>Creation of database and accessing information through JDBC for SQL queries in Java language</td>
</tr>
<tr>
<td>B.Tech, Third year</td>
<td>2 Batches</td>
<td>Graphical simulation of CPU scheduling algorithms with user interface in Visual Basic</td>
</tr>
<tr>
<td>M.C.A, First year</td>
<td>1 Batch</td>
<td>Parsing a given C program file to find out the number of functions, parameter and type data using C language</td>
</tr>
<tr>
<td>M.C.A, Second year</td>
<td>1 Batch</td>
<td>List operations in C language</td>
</tr>
</tbody>
</table>

5.5.3 Conduct of Experiment and Data Collection

The experiments were conducted in different time slots. Students of each batch were randomly divided into two groups: pair programming versus traditional method. The students who adopted pair programming were requested to switch the roles of navigator and driver whenever it was required. The students were made to know the exercises only at the beginning of laboratory classes. The general workflow in doing the short-duration exercises consists of the following sequence of the activities:

1. The students have to prepare a design document. The design is represented by structure charts and flowcharts and/or algorithms. The design document is evaluated for 10 marks by laboratory instructors. The design document is evaluated based on the completeness and correctness of the design which is based on the following.
 (a). the extent by which the design covers the required functionality.
 (b). correctness of flowcharts/structure charts/algorithms.
 (c). right level of detail.

Any incomplete or wrong design is indicated to the students and they are asked to redo the design document correctly. Each pair in the pair-programming group has to submit only one design document.
2. After submitting the design documents, the students directly key-in the code without writing the programs in notebooks. During programming, they can check syntax errors of the programs. The students may decide about the test cases either before or after writing the programs. On completion of programming, the students can use their test cases to test the programs. Once they are satisfied with the working of the programs, they have to demonstrate the correctness by executing the programs with the test cases of the instructor. If any errors are found, then the instructor asks the students to correct it. The exercise is considered as completed if all test cases for the exercise run successfully. The completion time is noted in minutes. The programs are evaluated for only the correctness criteria and not for any other quality factor such as coding style, etc.

3. As soon as a student or a pair completes an exercise, the students were immediately asked to take up the test individually in paper for half an hour. The tests are evaluated for 20 marks.

5.5.4 Threats

Threats to validity are factors beyond our control that can affect the dependent variables. Such threats can be considered unknown independent variables causing uncontrolled rival hypotheses to exist in addition to the research hypotheses. One crucial step in an experimental design is to minimize the impact of these threats (Basili et al., 1996). Two different classes of threats to validity are threats to internal validity and threats to external validity. Threats to internal validity constitute potential problems in the interpretation of the data from the experiment. If the experiment does not have a minimum internal validity, valid inference cannot be made about the cause-effect relationship between independent and dependent variables. On the other hand, the level of external validity is an indicator of the generalizability of the results. Depending on the external validity of the experiment, the data can be assumed valid.
in other populations and settings. The threats that are anticipated and tried to control are explained below.

Internal Validity Threats

The two-group design of the present experiment eliminates many of the internal validity threats (Trochim, 2000). However, it was found that there were still some other internal validity threats in the experiment and they were handled as explained below.

Threat due to Instrumentation: The experiment involved two hundred and fourteen students, from the B.Tech and M.C.A are grouped into ten batches. When students of different levels were participating, it is not relevant to assign the same laboratory exercise to all students. Hence, different exercises were given to the students as shown in the table 5.4. In this kind of situation, it is necessary to ensure that all the students are doing the exercises of same duration and same level of difficulty. The uniformity in duration and the difficulty level of the exercises were verified by conducting the same set of laboratory exercises using traditional method, with students who were not involved in the present study. It was also ensured that the batches chosen for the experiment in a year had been taught by the same teacher.

Threat due to Selection: Each student in a batch was assigned randomly to either the pair programming group or the traditional method group. The test for the equivalence of two groups is done and is explained in section 5.6.1.

External Threat

Generally, the students in the department are very cordial to each other and they are ready to help each other. If this kind of environment does not exist, the results of the present experiment will not be valid.
5.6 Results

Data Analysis Procedures

The collected data from the experiment are presented graphically using box plots indicating the individual data points, the 10 and 90 percent quartiles (as whiskers), the 25 and 75 percent quartiles (by the edges of the box), and the mean (by a cross line in the box). The outlier points in the data were identified and an analysis of these points revealed no abnormality.

The analysis of data was carried out as follows:

1. The equivalence of two groups was tested using t-test.
2. The check for the existence of covariance was done using correlation coefficients.
3. The validation of the hypotheses was done with t-tests.

In the present study, the t-test was used to compare the learning efficiency of pair programming and traditional groups. The detailed explanation of the t-tests has been given in Appendix A(A.1). The *level of significance* for the present study was set at 0.05.

5.6.1 Equivalence of Two Groups

Even though the random assignment of subjects (students) to the two groups ensures equality, it is good to check the equality of the two groups using some other parameter. It is decided to use academic achievement level of the students as the parameter. For the present study, the academic achievement level is represented by the cumulative percentage of the marks. For uniformity, the Cumulative Grade Point Average (C.G.P.A) of M.C.A students was converted into *cumulative percentage of marks* through interpolation using conversion table 5.5 (IITD, 2000). The conversion table has equivalent *cumulative percentage of marks* for the C.G.P.A from 5.75 to 8 only and the equivalent *cumulative percentage of marks* for C.G.P.A of 8.5 and 9 are extrapolated.
Table 5.5 Conversion table for C.G.P.A to percentage of marks

<table>
<thead>
<tr>
<th>C.G.P.A</th>
<th>5.75</th>
<th>6.25</th>
<th>6.75</th>
<th>7.50</th>
<th>8.00</th>
<th>8.50</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of marks</td>
<td>50.0</td>
<td>55.0</td>
<td>60.0</td>
<td>70.0</td>
<td>75.0</td>
<td>80.7</td>
<td>86.4</td>
</tr>
</tbody>
</table>

The box plot of percentage marks of pair programming and traditional method groups are given in figure 5.2.

Figure 5.2 Box plot for percentage of marks for pair programming and traditional method group

The independent t-test was applied on the cumulative percentage of the marks and the results are presented in the table 5.6 (refer Appendix D (D.3) for details of the test). As the p-value is more than 0.05, it can be concluded that the groups do not differ significantly with respect to academic achievement level at 95% confidence level.

Table 5.6 Parameters for checking for testing equivalence between pair programming and traditional method groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of students</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Std. Err.</th>
<th>Hypothesis testing parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair programming</td>
<td>116</td>
<td>74.22</td>
<td>6.62</td>
<td>0.61</td>
<td>t-value = 0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Degrees of freedom = 211</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p-value = 0.769</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Significance level = 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Difference in mean = 0.251</td>
</tr>
<tr>
<td>Traditional method</td>
<td>98</td>
<td>73.97</td>
<td>5.86</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

139
5.6.2 Checking of a Covariate

The cumulative percentage of marks of a student was not a factor in our design. Since the cumulative percentage of marks represents the academic achievement level of the students, it may influence the output (dependent) variables. If the cumulative percentage of marks influences the outcome of the experiment considerably, it should be included as a covariate in our analysis. In order to test the extent of influence of the cumulative percentage of marks on the output (dependent) variables, the correlation relationship between cumulative percentage of marks and the output (dependent) variables are to be computed. In the case of pair programming the average cumulative percentage of marks of two students has been used. The correlation results (refer Appendix D (D.4)) shown in table 5.7 indicate that a negligible correlation relationship exists between elapsed time and cumulative marks percentage. A low correlation relationship exists between design marks and cumulative marks percentage as well as test marks and cumulative marks percentage. An influencing variable may be considered as covariate only if the correlation coefficient is more than 0.3 (Davis, 1971). In the present experiment all the correlations coefficients are less than 0.3 and hence cumulative percentage of marks was not considered as covariate.

<table>
<thead>
<tr>
<th>Dependent Variables</th>
<th>Pearson Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elapsed time</td>
<td>-0.0622</td>
</tr>
<tr>
<td>Design Marks</td>
<td>0.2054</td>
</tr>
<tr>
<td>Test Marks</td>
<td>0.1434</td>
</tr>
</tbody>
</table>

Note: Interpretations according to descriptors: .01-.09 (negligible), .10-.29 (low), .30-.49 (moderate), .50-.69 (substantial), .70-.99 (very high), and 1.0 (perfect).

5.6.3 Testing of Hypotheses

The proposed hypothesis are validated using t-test (Refer Appendix D for details of t-test (D.6) and data (D.2, D.5)).
Hypothesis 1: The students who adopt pair programming complete the laboratory exercises faster than the students who adopt the traditional method. In order to check the mean value of elapsed time of the pair programming group is significantly lower than that of the traditional method group, the following statistical hypotheses were used.

Null Hypothesis \[M_{EPPG} = M_{ETMG} \]

Alternate Hypothesis \[M_{EPPG} < M_{ETMG} \]

Where \[M_{EPPG} \] - Mean value of *Elapsed time* of Pair programming Group
\[M_{ETMG} \] - Mean value of *Elapsed time* of Traditional method Group

The box plot for the variable *elapsed time* is presented in figure 5.3.

![Box plot for elapsed time](image)

Figure 5.3 Box plot for elapsed time to complete a laboratory exercise for pair programming and traditional method group

The results of the t-test are shown in table 5.8. Since the p-value is less than 0.05, the null hypothesis is rejected and the alternative hypothesis is accepted at the confidence level of 95%. This in turn leads to the acceptance of research hypothesis 1

Table 5.8 Testing parameters for hypothesis 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of students</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Std. Err.</th>
<th>Hypothesis testing parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair programming</td>
<td>58</td>
<td>$M_{EPPG} = 138.9$</td>
<td>26.4</td>
<td>3.5</td>
<td>t-value = -7.33, Degrees of freedom = 122, p-value = 0.000, Significance level = 0.05, Difference in mean = -32.50</td>
</tr>
<tr>
<td>Traditional method</td>
<td>98</td>
<td>$M_{ETMG} = 171.4$</td>
<td>27.3</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis 2: The quality of design for laboratory exercises is better when the students adopt pair programming than that the traditional method to do laboratory exercises of short-duration. In order to check mean value of *design marks* of the pair programming group is significantly higher than that of traditional method group the following statistical hypothesis are used.

Null Hypothesis \[MD_{MPG} = MD_{MTMG} \]

Alternate Hypothesis \[MD_{MPG} > MD_{MTMG} \]

Where \(MD_{MPG} \) - Mean value of *Design Marks* of Pair programming Group
\(MD_{MTMG} \) - Mean value of *Design Marks* of Traditional method Group

The box plot for the output variable *design marks* is presented in figure 5.4.

![Box plot for design marks of pair programming and traditional method group](image)

Figure 5.4 Box plot for design marks of pair programming and traditional method group

The results of the t-test are shown in table 5.9. Since the p-value is less than 0.05, null hypothesis is rejected and the alternate hypothesis is accepted at the confidence level of 95%. This in turn leads to the acceptance of research hypothesis 2.

Table 5.9 Testing parameters for hypothesis 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of students</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Std. Err.</th>
<th>Hypothesis testing parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair programming</td>
<td>58 Pairs</td>
<td>(M_{DMPPG} = 7.74)</td>
<td>1.37</td>
<td>0.18</td>
<td>t-value = 3.31 [Degrees of freedom = 133 [p=0.001 [Significance level = 0.05 [Difference in mean = 0.798</td>
</tr>
<tr>
<td>Traditional method</td>
<td>98 Students</td>
<td>(M_{DMTG} = 6.94)</td>
<td>1.59</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>
Hypothesis 3: The subject knowledge and programming skill that are gained by individual students is higher when they adopt pair programming than the traditional method. In order to test the mean value of *test marks* of the pair programming group is significantly higher than that of the traditional group the following statistical hypothesis were used.

Null Hypothesis

$$M_{\text{TMPPG}} = M_{\text{TMTMG}}$$

Alternate Hypothesis

$$M_{\text{TMPPG}} > M_{\text{TMTMG}}$$

Where \(M_{\text{TMPPG}} \) - Mean value of *Test Marks* of Pair programming Group

\(M_{\text{TMTMG}} \) - Mean value of *Test Marks* of Traditional method Group

The box plot of *test marks* is given in figure 5.5.

![Box plot for test marks for pair programming and traditional method group](image)

Figure 5.5 Box plot for test marks for pair programming and traditional method group

The results of the t-test are shown in table 5.10. Since the p-value is less than 0.05, the null hypothesis is rejected and the alternate hypothesis is accepted at the significance level of 0.05. This in turn leads to the acceptance of hypothesis 3.

<table>
<thead>
<tr>
<th>Table 5.10 Parameters for testing hypothesis 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Pair programming</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Traditional method</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
5.7 Discussion

The mean values of elapsed time (table 5.8) for pair programming and traditional method group are used to compute the relative elapsed time and are illustrated graphically in figure 5.6. The pairs in the pair programming group completed their assignments by 19% faster than the individual students of the traditional method group. Our experimental results validate the earlier arguments that pair programming is very effective in debugging and correcting the errors.

![Relative Elapsed Time](image)

Figure 5.6 Comparison of elapsed time

The graphical representation of the mean values of design marks (table 5.9) for the pair programming and the traditional method group are shown in figure 5.7.

![Design Marks](image)

Figure 5.7 Comparisons of design marks
The resulting quality of the design has improved by 8%, which is statistically significant. This improvement in the design marks indicates that the presence of the pair partner helps to achieve a design which satisfies the requirements completely and correctly than that of the traditional method group students.

The mean values of test marks (table 5.10) for pair programming and traditional method group are presented graphically in figure 5.8.

![Diagram showing test marks comparison]

Figure 5.8 Comparisons of test marks

It is seen from the figure that test marks of the pair programming groups are 8% higher than the other group. This difference is also statistically significant. The test marks represent gained knowledge and programming skills of an individual.

The improvement noted above in the mean values of the dependent variables between two groups are also used to quantify the improvement of learning efficiency as described in the section 5.5.1. The improvement in learning efficiency due to the adoption of pair programming over traditional method was computed as 16%, which is quite significant. Hence, it is concluded that pair programming increases the learning efficiency when it is adopted for short-duration programming tasks. In addition the following indirect benefits of pair programming are also identified during the experiment.
1. In pair programming, the students work in pairs. This requires cooperation between them. Thus pair programming increases team spirit among students.

2. Pair programming reduces the resources (computers) that are required to conduct laboratory classes by half, as two students require only one computer.

3. Traditionally, the students used to clear their simple doubts from the laboratory instructor. In pair programming, the students tend to clarify their doubts with the pair partners. This leads to the reduction in workload of the instructor. This finding coincides with the findings of Williams and Kessler (2000b) that pair programming reduces the number of questions and emails that are asked to the instructor (Williams and Kessler, 2000b).

5.8. **Summary**

An attitude study was conducted to understand the student’s attitude towards pair programming. The findings of the attitude study indicate that respondents were willing to adopt pair programming. The study also explored the social issues of pair programming. This attitude study was followed by a formal experiment to find the effects of pair programming on learning efficiency for short duration programming tasks. The learning efficiency was evaluated in terms of *design marks, elapsed time* and *test marks*. The results of the experiment indicate that learning efficiency is significantly improved when pair programming is adopted compared to traditional method.