General Remarks

Thin-layer chromatography was performed on 250µm silica plates, while column chromatographic purifications were performed on 100-200 mesh silica gel. All amines, boronic acids and sulfonyl chlorides were obtained from Alfa-Aesar and Aldrich. Components for the catalytic systems; Pd(OAc)$_2$, Pd$_2$(dba)$_3$, PdCl$_2$(dpdf), PdCl$_2$(dcpf), and PdCl$_2$(dtbpf), ligands 2-(dicyclohexylphosphino)biphenyl, 2-(di-tert-butylphosphino)biphenyl, 1,1'-bis(diphenylphosphino)ferrocene, (±)-2,2'-(diphenylphosphino)-1,1'-binaphthalene and 2-(dicyclohexylphosphino)-2'-(N,N-dimethylamino)-1,1'-biphenyl, Xanthphos and tri tertiary butyl phosphine were purchased from Strem. All other reagents were obtained from commercial sources and used without further purification. 1,4-Dioxane was distilled over NaBH$_4$ and then stored over Na. Prior to each reaction 1,4-dioxane was freshly distilled. Compound 6-bromo/chloro-2-cyclopropyl-3-(pyridin-3-ylmethyl)quinazolin-4(3H)-one was prepared scheme as described in the literature. 1H NMR spectra were collected either at 400 MHz or at 300 MHz and spectra are referenced to residual protio solvent. 13C NMR spectra were collected either at 100 MHz or at 75 MHz are referenced to the carbon resonance of the deuterated solvent. Spectra were obtained either in deacidified CDCl$_3$ (deacidification was performed by percolating the solvent through a bed of solid NaHCO$_3$ and basic alumina) or in DMSO-d_6 (see specific compound descriptions below). High resolution mass spectrometry was performed at the Mass Spectrometry Laboratory at GVK Biosciences Pvt Ltd. LC-MS analyses were performed with electro spray ionization (ESI), and operated in the positive ion mode. LC analysis was performed using a diode array detector.