CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part I</td>
<td>No.</td>
</tr>
<tr>
<td>1</td>
<td>Introduction to solvent extraction</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction and historical aspects of solvent extraction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Theory of spectrophotometry and colorimetry</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Lambert’s law</td>
<td>2</td>
</tr>
<tr>
<td>1.4</td>
<td>Beer’s law</td>
<td>3</td>
</tr>
<tr>
<td>1.5</td>
<td>Deviation from Beers law</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>Basic principals of solvent extraction</td>
<td>5</td>
</tr>
<tr>
<td>(a)</td>
<td>Gibb’s phase rule</td>
<td>5</td>
</tr>
<tr>
<td>(b)</td>
<td>Distribution ratio (D) or extraction coefficient</td>
<td>5</td>
</tr>
<tr>
<td>(C)</td>
<td>Partition coefficient (P)</td>
<td>6</td>
</tr>
<tr>
<td>(d)</td>
<td>Percentage extraction</td>
<td>6</td>
</tr>
<tr>
<td>1.7</td>
<td>Classification of solvent extraction systems</td>
<td>7</td>
</tr>
<tr>
<td>(a)</td>
<td>Extraction by chelation or chelate formation</td>
<td>7</td>
</tr>
<tr>
<td>(b)</td>
<td>Extraction by Ion-pair formation</td>
<td>7</td>
</tr>
<tr>
<td>(c)</td>
<td>Extraction by solvation</td>
<td>8</td>
</tr>
<tr>
<td>(d)</td>
<td>Synergistic extraction</td>
<td>9</td>
</tr>
<tr>
<td>1.8</td>
<td>Experimental setup and Instruments</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>11</td>
</tr>
</tbody>
</table>
2. Introduction to cyanex

2.1 Introduction to cyanex compounds 13

(a) Chelating extractants 13
(b) Solvating extractants 13

2.2 Properties of cyanex compounds 15

2.3 Cyanex 921 extractant 16

2.3.1 Chemical structure of cyanex 921 16
2.3.2 Stability of cyanex 921 16
2.3.3 Organic solubility of cyanex 921 16
2.3.4 Toxicity of cyanex 921 16
2.3.5 Applications of cyanex 921 17

2.4 Cyanex 272 extractant 18

2.4.1 Chemical structure of cyanex 272 18
2.4.2 Stability of cyanex 272 18
2.4.3 Organic solubility of cyanex 272 18
2.4.4 Toxicity of cyanex 272 18
2.4.5 Applications of cyanex 272 19

2.5 Cyanex 923 extractant 19

2.5.1 Composition of cyanex 923 19
2.5.2 Organic solubility of cyanex 923 19
2.5.3 Applications of cyanex 923 20

2.6 Cyanex 301 extractant 20

2.6.1 Chemical structure of cyanex 301 20
2.6.2 Applications of cyanex 301 21
2.7 Cyanex 471X
2.7.1 Chemical structure of cyanex 471X
2.7.2 Toxicity of cyanex 471X
2.7.3 Applications of cyanex 471X
2.8 Scope of solvent extraction with cyanex compounds
References

3. Liquid-liquid extraction of uranium(VI) using cyanex 272 in toluene from sodium salicylate medium

3.1 Introduction
3.2 Experimental
3.2.1 Apparatus and reagents
3.2.2 General procedure
3.3 Results and discussion
3.3.1 Extraction of uranium(VI) as a function of sodium salicylate concentration
3.3.2 Effect of varying concentration of cyanex 272
3.3.3 Time of equilibration and choice of stripping agents
3.3.4 Influence of diluents on the extraction of uranium(VI)
3.3.5 Effect of varying concentration of uranium(VI)
3.3.6 Separation of uranium(VI) from binary mixtures
3.3.7 Separation of uranium(VI) from multicomponent mixtures
3.3.8 Analysis of uranium(VI) in monazite sand and syenite rock sample
4. Liquid-liquid extraction of thorium(IV) using cyanex 272 in kerosene from sodium salicylate medium

4.1 Introduction

4.2 Experimental

4.2.1 Apparatus and reagents

4.2.2 General procedure

4.3 Results and discussion

4.3.1 Effect of concentration sodium salicylate on extraction of thorium(IV)

4.3.2 Study of effect of concentration of Cyanex 272

4.3.3 Effect of equilibration time

4.3.4 Study of stripping agents

4.3.5 Effect of diluents

4.3.6 Effect of various cyanex extractant

4.3.7 Effect of varying concentration of thorium(IV)

4.3.8 Influence of co-existing ions

4.3.9 Separation of thorium(IV) from multicomponent mixtures

4.3.10 Analysis of thorium(IV) in gas mantle

4.3.11 Analysis of thorium(IV) in monazite sand

4.4 Conclusion

References
5. Liquid-liquid extraction of cerium(III) using cyanex 923 in kerosene from sodium acetate medium

5.1 Introduction 72

5.2 Experimental 74

5.2.1 Apparatus and reagents 74

5.2.2 General procedure 74

5.3 Results and discussion 75

5.3.1 Extraction of cerium(III) as a function of sodium acetate concentration 75

5.3.2 Effect of varying concentration of cyanex 923 77

5.3.3 Time of equilibration and choice of stripping agents 79

5.3.4 Influence of diluents on the extraction of cerium(III) 81

5.3.5 Effect of varying concentration of cerium(III) 82

5.3.6 Separation of cerium(III) from binary mixtures 84

5.3.7 Separation of cerium(III) from multicomponent mixtures 86

5.3.8 Analysis of Cerium in geological sample 87

Conclusion 88

References 89

Part II

1. Introduction to Crown Ethers

1.1 Introduction 90

1.2 Histology of Crown Ethers 91

1.3 Classification of Crown Ethers 93
2. Liquid-liquid extraction of thorium(IV) using dibenzo-18-crown-6 in xylene from L-histidine medium

2.1 Introduction 114

2.2 Experimental 116

2.2.1 Apparatus and reagents 116

2.2.2 General procedure 117

2.3 Results and discussion 117

2.3.1 Effect of concentration of L-histidine on extraction of thorium(IV) 117
2.3.2 Study of effect of concentration of Dibenzo-18-crown-6 119

2.3.3 Effect of equilibration time 121

2.3.4 Study of stripping agents 121

2.3.5 Effect of diluents 123

2.3.6 Effect of varying concentration of thorium(IV) 124

2.3.7 Influence of co-existing ions 126

2.3.8 Separation of thorium(IV) from binary mixtures 128

2.3.9 Analysis of thorium(IV) in gas mantle 130

2.3.10 Analysis of thorium(IV) in monazite sand 130

2.4 Conclusion 130

References 131

Summary of Work 132

List of Publications 136

List of Papers Presented at Conferences 137