Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/3400
Title: Six sigma approach based off line technique for modeling and prediction of injection moulding process parameters in SMEs
Researcher: Bharti, Prem Kumar
Guide(s): Khan, M I
Singh, H
Keywords: SMEs
Injection Moulding
Six Sigma
Upload Date: 18-Apr-2012
University: Integral University
Completed Date: May, 2011
Abstract: Injection Moulding (IM) is considered to be one of the most prominent processes for mass production of plastic products. One of the biggest challenges, facing injection molders today, is to determine the proper settings for the IM process variables. Selecting the proper settings for an IM process is crucial because the behavior of the polymeric material during shaping is highly influenced by the process variables. Consequently, the process variables govern the quality of the parts produced. The difficulty of optimizing an IM process is that the performance measures usually show conflicting behavior. Therefore, a compromise must be found between all of the performance measures of interest. This thesis demonstrates a method of achieving six sigma standards in small and medium plastic injection moulding enterprises. A modified six sigma cycle called DAURR (Diagnose, Analyze, Upgrade, Regulate and Review) based on Taguchi method, Regression analysis and Artificial Neural Network has been proposed in this work that can be used to find the best compromises between performance measures in IM, and potentially other polymer processes. Its feasibility was studied with the help of a case study. The method has been employed for the improvement in two quality characteristics (hardness and over shrinkage) of injection-molded nylon-6 kamani bush produced in a small enterprise. After the implementation of the proposed method, targets for improvement are clearly defined with the problems and causes being identified. The process parameters are then optimized for quality characteristics improvements so that the Six Sigma standard is reached. This research work provides methodology so that six sigma approaches can be applied and adjusted according to the requirements of small and medium enterprises (SMEs). This work also presents a novel, general and intelligent approach to multi response process optimization, with a purpose to obtain a single optimum setting of process parameters that meets specifications of all considered, possibly correlated, responses.
Pagination: xiv, 130p.
URI: http://hdl.handle.net/10603/3400
Appears in Departments:Department of Mechanical Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File155.89 kBAdobe PDFView/Open
02_table of contents.pdf97.18 kBAdobe PDFView/Open
03_certificate.pdf136.24 kBAdobe PDFView/Open
04_abstract.pdf69.7 kBAdobe PDFView/Open
05_acknowledgements.pdf68.42 kBAdobe PDFView/Open
06_list of tables figures & symbols.pdf113.83 kBAdobe PDFView/Open
07_chapter 1.pdf162.9 kBAdobe PDFView/Open
08_chapter 2.pdf246.19 kBAdobe PDFView/Open
09_chapter 3.pdf262.74 kBAdobe PDFView/Open
10_chapter 4.pdf729.97 kBAdobe PDFView/Open
11_chapter 5.pdf326.16 kBAdobe PDFView/Open
12_chapter 6.pdf119.47 kBAdobe PDFView/Open
13_chapter 7.pdf1.09 MBAdobe PDFView/Open
14_chapter 8.pdf93.22 kBAdobe PDFView/Open
15_references.pdf235.09 kBAdobe PDFView/Open


Items in Shodhganga are protected by copyright, with all rights reserved, unless otherwise indicated.