Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/29063
Title: Efficient Arrhthmia Classification in ECG using Machine Learning Techniques
Researcher: Karpagachelvi, S
Guide(s): Arthanariee, A M
Keywords: computer, arrthmia, ECG, machine, techniques
Upload Date: 26-Nov-2014
University: Mother Teresa Womens University
Completed Date: 27.06.2013
Abstract: None newline
Pagination: xii, 145p.
URI: http://hdl.handle.net/10603/29063
Appears in Departments:Department of Computer Science

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File42.15 kBAdobe PDFView/Open
02_certificate.pdf20.33 kBAdobe PDFView/Open
03_declaration.pdf20.64 kBAdobe PDFView/Open
04_acknowledgement.pdf23.68 kBAdobe PDFView/Open
05_contents.pdf31.56 kBAdobe PDFView/Open
06_list_of_tables.pdf21.72 kBAdobe PDFView/Open
07_list_of_figures.pdf25.65 kBAdobe PDFView/Open
08_abbreviations.pdf25.76 kBAdobe PDFView/Open
09_chapter1.pdf1.94 MBAdobe PDFView/Open
10_chapter2.pdf124.92 kBAdobe PDFView/Open
11_chapter3.pdf5.24 MBAdobe PDFView/Open
12_chapter4.pdf3.49 MBAdobe PDFView/Open
13_chapter5.pdf1.62 MBAdobe PDFView/Open
14_chapter6.pdf601.81 kBAdobe PDFView/Open
15_chapter7.pdf442.15 kBAdobe PDFView/Open
16_chapter8.pdf51.19 kBAdobe PDFView/Open
17_conclusion.pdf18.9 kBAdobe PDFView/Open
18_bibliography.pdf104.08 kBAdobe PDFView/Open


Items in Shodhganga are protected by copyright, with all rights reserved, unless otherwise indicated.