TAXONOMIC AND PHYLOGENETIC CONSIDERATIONS
Bentham and Hooker (1862-67) include the Sapindaceae and the Anacardiaceae in the order Sapindales of Disciflorae along with the Sabiaceae. They divide the family Sapindaceae into five subfamilies viz. Sapindaeae, Acerineae, Dodonaeae, Meliantheae and Staphyleae.

Hallier (1912) describes the Sapindaceae in the Aesculinae and the Terebinthaceae under Terebinthinae. He treated most of the Amentiferae (including the Casuarinae) as reduced descendants of *Pistacia* like Terebinthaceae (Anacardiaceae). The family is considered to have been derived from the Rutaceae.

Bessey (1915) and Rendle (1925) also treat these two families under Sapindales. In the Englerian scheme (Engler and Diels, 1936), the Sapindales are composed of 11 suborders and 23 families. The Anacardiaceae are placed under Anacardiinae while the family Sapindaceae finds itself in Icacininae along with Icacinaceae, Aetoxicaceae, Aceraceae and Hippocastanaceae.

In the treatment of Hutchinson (1973) these two families are also classified under the Sapindales.

In the latest Engler's Syllabus the Anacardiaceae and the Sapindaceae are kept under Sapindales in association
with many families (Melchior, 1964). The latter family is with two subfamilies - Dodonaeoideae and Sapindoideae.

Takhtajan (1969, 1980) placed the family Anacardiaceae in the Rutales and the Sapindaceae under the Sapindales of Super order Rutanae. He further splits the Sapindaceae into two subfamilies - Dodonaeoideae and Sapindoideae.

Dahlgren (1980) includes the family Anacardiaceae (including Pistaciaceae and Julianiaceae) and Sapindaceae (including Stylobasidiaceae) in Sapindales under Rutiflorae.

Cronquist (1981) has lumped many families of the Rutales and the Sapindales into his Sapindales including the Sapindaceae and the Anacardiaceae. He even submerged the small family Ptaeroxylaceae in the Sapindaceae with some hesitation. The Ptaeroxylaceae consist of two genera, e.g., Ptaeroxylon and Cedrelopsis and differ from typical Sapindaceae in having intrastaminal nectary disk which is modified into short gynophore.

A resume of the taxonomic treatment of these two families in the earlier and even in the current systems of classifications would reveal considerable diversity of opinion in regard to their position and association with other families in a group.
Cronquist (1981) is of the opinion that although a number of its families have in the past referred to several different orders, the Sapindales are a well characterized natural group. Only two families are really peripheral. It is the family Staphyleaceae which connects the Sapindaceae to the ancestral Rosales in the vicinity of the Cunoniaceae, and the Zygophyllaceae are suggestive of a connection with the Geraniales.

The present study brings forth certain parameters which are characteristic and distinctive to the taxa of these two families and may also be employed to delineate them. They have, however, limitations in a comprehensive assessment of the taxonomic and phylogenetic aspects of these families. Any such assessment has to consider data from other disciplines while employing anatomical evidence. Through the following paragraphs is attempted a discussion on the relationships of the two families.

The Sapindaceae are distinguished from the Anacardiaceae by the absence of resin ducts. The occurrence of resin canals is characteristic for the Anacardiaceae and is observed in petiole/petiolum and leaves of the present study. These canals are always associated with the phloem. Most of the plants have pinnate leaves in Sapindaceae; the woody climbers are with stipules. The leaves are pinnate and simple in the Anacardiaceae.
Majority of the plants show trilacunar three-traced node in both families. A single genus each of the two families, *Cupania* and *Holigarna*, is with unilacunar one-traced node. Multilacunar multi-traced node is found to be characteristic only in *Semecarpus* of the Anacardiaceae. Anatomy of the node presents evidence more to indicate similar development in the two families.

The venation pattern is pinnate, camptodromous-eucamptodromous in most of the plants in these families. It is craspedodromous in *Cardiospernum* and brochidodromous in *Spondias*. The transfusion tracheids are observed only in some sapindaceous plants and these are more in the nature of habitat responses rather than of any phyletic consequence.

The present account shows anomocytic, anisocytic, tetracytic, actinocytic and cycloctic stomata in the Sapindaceae and anomocytic, anisocytic tetracytic and actinocytic in the Anacardiaceae. The occurrence of the adaxial stomata on or around the veins in hypostomatic leaves is interesting.

Plants of both the families show glandular hairs. Hutchinson (1973) has listed these two families in a group showing "glandular leaves". The plants of Anacardiaceae collectively known as "renghas" secrete a toxic substance - a resinous lacquer.
Papillose epidermis in Semecarpus and Holigarna, multicelled hypoderm of leaves in Mangifera, Holigarna and also in Gluta of Anacardiaceae (Wilkinson, 1983) are of diagnostic value as also the single layered hypoderm of Cupania of Sapindaceae. They may be significant ecological parameters but with little phyletic value.

Tannins and calcium oxalate crystals are common in most of the plants in these families (cf. Cronquist, 1981).

Heimsch (1942) has studied the wood anatomy in the tribes of the Anacardiaceae where certain trends are indicated. More species of the Mangiferae have homogeneous rays and bands of parenchyma than any others. The greatest proportion of ring porous forms with advanced stages of vessel aggregation occur in the Rhoideae and all the species of the Spordiae have septate fibres, while these are lacking from the Semecarpeae. The septate fibres are characteristic of the Sapindaceae (Heimsch, 1942) and the family is highly specialized with respect to rays than the other families in the group.

The lianas of Sapindaceae are adapted to cope with the climbing woody habit in such a way that they have to develop a characteristic stem-anomalii. The plants of Anacardiaceae, on the other hand, have undergone various possible adaptive features to resist the tropical environment
and protect themselves from the attack of various macro- and microorganisms.

It is thus evident that two families do share certain characters that enable one to align them as has been done by most taxonomists. There appears to be more in common in between them - features very similar - that leads one to infer that they are better considered as parallel derivatives from a common or similar ancestral stock/s. They have departed more in respect to floral characteristics which in a way demonstrate adaptive radiations with respect to adaptations at evolutionary diversification, rather than revealing the origin of one from the other. There is certainly no case for a linear lineage amongst them. Both are similarly situated with a fair share of disparate characteristics of diagnostic value. However, there do exist a number of features which help delineate the two families and certain others which show advanced features. The above discussion reveals that the Anacardiaceae are not at a comparatively low level of evolution.

A discussion on the closely related families of the Sapindaceae and Anacardiaceae is now attempted in regard to their taxonomic alignments.

The genera comprising the Aceraceae, Melianthaceae, Staphyleaceae and Hippocastanaceae were included in the Sapindaceae in the system of Bentham and Hooker (1862-67).
The family Aceraceae (Acer and Dipteronia) is distinguished from the Sapindaceae by opposite, usually palmate leaves, actinomorphic flowers, and the fruit a schizocarp or samara. These two families are closely related to each other in many respects. The wood anatomy also suggests close affinity, except for the absence of septate fibres in Aceraceae (Heimsch, 1942). The tribe Harpullieae of the Sapindaceae may be regarded as providing the closest approach of the family to the Aceraceae (Cronquist, 1981). However, Hallier (1912) regards the Anacardiaceae as ancestral to the Aceraceae.

Gurke (1895) treats the Melianthaceae as a distinct family and shows the affinities with Sapindaceae but indicates rather notable differences between Grevia and other two genera Bersama and Melianthus. Hallier (1912) considers the Melianthaceae to be a part of the Sapindaceae. This family differs in the resupinate flowers by twisting of pedicel, stipules intrapetiolar often large, nodes multilacunar, stamens often usually connate and typically 4, pollen grains trinucleate and tricolporate, seeds with copious endosperm, plants not saponiferous, not producing mucilage, and without proanthocyanin.

Hutchinson (1973) has raised Grevia to the status of the new family, the Greyiaceae in the Cunoniales while retaining Bersama and Melianthus in the Melianthaceae under
Sapindales. On the basis of anatomy, Heimsch (1942)
justifies the segregation of this genus as a separate
family but places it near to the Melianthaceae. He finds no
support for including the family in the Cunoniales.
Takhtajan (1969) placed Greyiaceae near to Melianthaceae
under Sapindales. In his later contribution (Takhtajan,
1980) the Greyiaceae has been kept under suborder
Saxifragineae of the order Saxifragales of Super order
Rosanae. Dahlgren (1980) treats the Melianthaceae under
Sapindales with uncertain position. The wood structure of
the Melianthaceae is considered to be more specialized than
that of Sapindaceae (Cronquist, 1981).

The family Staphyleaceae is distinguished by absence of
ellagic acid, not cyanogenic, not saponiferous, without
iridoid compounds, cup-like intrastaminal disc, more numerous
ovules, abundant endosperm and straight embryo. Different
authors have included this family in various orders. Bessey
(1915), Rendle (1925), Wettstein (1935) treat it under
Celastrales. This family is placed in the Sapindales (sensu
stricto) by Hutchinson (1973). Hallier (1912) transfers
them to his Rosales and believes them to be allied to
Cunoniaceae and Saxifragaceae. Based on the cytological
evidence, Foster (1933) concludes that they have had a common
origin with the Aceraceae.
Cronquist (1981) is of the opinion that the Celastrales and Sapindales are derived in parallel lines from the Rosales and the three different ordinal positions for the Staphyleaceae do not require any great conceptual difference as to their relationships. The Staphyleaceae would be anomalous under the Celastrales due to their compound leaves. Cronquist further states that they form a connecting link between the Cunoniaceae (Rosales) and the Aceraceae and Sapindaceae (Sapindales) and could with almost equal propriety be put in either order.

On the whole the Staphyleaceae have progressed along the sapindalean road than the Cunoniaceae. Cronquist (1981) prefers to retain the Cunoniaceae in Rosales and refers the Staphyleaceae to the more advanced order Sapindales.

It is interesting and significant that the Staphyleaceae have the same basic chromosome number (13) as the Aceraceae. The characteristic inflated capsules of Staphylea are similar to Koelreuteria of the Sapindaceae. If the Staphyleaceae are included in the Sapindales, they may be regarded as most archaic family in the order because of primitive wood structure, mostly stipulate leaves, several ovules in each locule, well developed endosperm and sometime separate carpels. Cronquist is not averse to placement of the family in the Rosales near Cunoniaceae if these
characters are found sufficiently convincing for such an alignment.

Apart from Bentham and Hooker (1862-67) the genera of Hippocastanaceae are also treated in the Sapindaceae by many authors (Hallier, 1912; Hutchinson, 1973). The family is characterized by palmately compound leaves, nodes trilacunar, sometimes pentalacunar, large flowered thyrse, pollen grains binucleate and tricolporate, the leathery capsule with a large usually solitary seed, and the chromosome number, \(x = 20\).

The families Hippocastanaceae (Aesculus and Billia) and Aceraceae are very closely related to Sapindaceae especially to the tribe Harpullieae (Radlkofcr, 1890; 1931-1934; Muller and Leenhouts, 1976; Takhtajan, 1980). Both Aceraceae and Hippocastanaceae could with nearly the same right be added to the Sapindaceae as two more tribes (Muller and Leenhouts, 1976).

The monotypic Chinese genus Bretschneidera is removed from the Hippocastanaceae and placed into a separate family Bretschneideraceae (earlier this genus was treated in Sapindaceae); Pax (1895) included it in Hippocastanaceae. Dahlgren (1980) keeps the family Bretschneideraceae in the Sapindales but considers the position uncertain. Takhtajan (1980) treats the family near to Sapindaceae and
Hippocastanaceae. According to Cronquist (1981) this monotypic genus would be anomalous in either family because of its perigynous flowers, mainly large and pluriseriate wood rays and myrosin cells. On the basis of occurrence of myrosin cells, it is sometimes referred to Capparales but otherwise it appears to have little in common with that group. Breitschneideraceae are presumed to have close affinity with the Moringaceae (Lawrence, 1951).

Although on the anatomical basis, particularly in regard to the occurrence of resin ducts, Burseraceae and Anacardiaceae are very closely allied, in the Englerian system (1931), these two families are treated in different orders because of their different floral characters. However, many authors consider them to be closely related.

Based on wood structure, Webber (1941) and Heimsch (1942) conclude that the Anacardiaceae, Burseraceae, Sapindaceae, Rutaceae, Meliaceae and Simarubaceae form a natural group. Heimsch (1942) states that the Anacardiaceae and Burseraceae are very similar and go together. These two families are distinct from others in regard to many wood anatomical features. Webber (1941) on the other hand concludes that the wood structure of Burseraceae, Anacardiaceae, Simarubaceae, Rutaceae and Meliaceae is more suggestive of the probable common ancestry of all five
families. She considers the Anacardiaceae and Burseraceae to be the least specialized of the group and suggests that the traumatic canals of the Simarubaceae and Rutaceae may indicate their origin from plants such as the Burseraceae and Anacardiaceae that have normal intercellular canals in their rays.

The taxonomic position of the genus *Filicium* studied for this contribution has been called into question. Bentham and Hooker (1862-67) include this genus in the Burseraceae. Hutchinson (1973) also treats it under the Burseraceae, while many taxonomic accounts keep *Filicium* in the Sapindaceae (Cooke, 1903; Gamble, 1935; Willis, 1966; Mukherjee, 1980).

During the studies on the anatomy of vegetative organs of many dicot families, Metcalfe and Chalk (1950) have described this genus in the Sapindaceae. The family Burseraceae is characterized by the occurrence of resin canals (Webber, 1941; Heimsch, 1942; Metcalfe and Chalk, 1950). The petiolule and the leaf of *Filicium* do not show the presence of such resin canals as indicated by the present study. The petiolule anatomy is more or less similar to that of the sapindaceous plants. The nodes are mostly pentalacunar in the Burseraceae (Cronquist, 1981); in *Filicium* the node is trilacunar and three-traced. The
The chromosome number in Burseraceae is $x = 11, 13, 23$. While in Sapindaceae $x = 10-16$ (Cronquist, 1981). *Filicium* has $2n = 32$ (Guervin, 1961) and thus the genus has found a place in Sapindaceae (Fedorov, 1974). It is interesting that the rachis of the pinnate leaf of *Filicium* and that of *Sapindus saponaria* are similar and winged.

Data on the anatomical studies of *Filicium* i.e., absence of resin canals, similar petiolar anatomy, trilacunar three-traced node, glandular hairs etc. justify the alignment of the genus within Sapindaceae rather than in the Burseraceae.

The above discussion, while adducing data of pertinent phylogenetic significance would also reveal that considerable scope for further studies exists. A more comprehensive discussion should await studies on more genera of these two families. It is also apparent that many genera which have been worked out in respect to certain aspects need further studies in other disciplines, particularly floral anatomy. These should be of great help although it is a difficult task as there exists a practical difficulty - one has to get rid of tanniferous material from flowers.
Key to the genera and species

Anatomical parameters based on the studied aspects in this contribution are found to be helpful in delineating the genera and species of the Sapindaceae and the Anacardiaceae presented below:

KEY TO THE GENERA OF SAPINDACEAE

1. Node - Trilacunar, three-traced, adaxial hypoderm absent in leaf/leaflets:

2. Collenchyma hypodermal in petiole/petiolule:

3. Hypodermal collenchyma in four bands:
 Vascular bundles four, cuticular bands on adaxial epidermis, striations on abaxial surface, crystals of one type, stomata, anomocytic, anisocytic, amphistomatic leaf
 Cardiospermum

3. Hypodermal collenchyma in ring:

4. Peltate scales, individual vascular bundles capped outside by sclerenchymatous bands

5. Bundle sheath of parenchymatous layer transfusion tracheids at the apex of leaf, amphistomatic leaf.. Dodonaea

5. Bundle sheath of parenchymatous and sclerenchymatous layers, no transfusion tracheids, hypostomatic leaf
 Filicium
4. Peltate scales absent, sclerenchymatous cylinder/two arc-shaped sclerenchyma in a ring surrounds the vascular tissue:

6. Transfusion tracheid present:

7. Stomata anomocytic, cyclocytic, anisocytic, few abaxial epidermal cells do not develop striations, glandular and non-glandular trichomes one-celled

Erioglossum

7. Stomata anomocytic, cuticular striations on both the epidermis, trichomes 1-many celled, uniseriate, glandular trichomes multicelled

Allophylus

6. Transfusion tracheids absent:

8. Cuticular striations on both the epidermis, groups of sclereids in cortex

Sapindus

8. Cuticular striations on adaxial epidermis, sclereids absent

Schleichera

2. Hypodermal collenchyma absent in petiole/petiolule:

9. Vascular bundles in a ring in petiolute, crystals of both types, stellate trichomes absent

Lepisanthes

9. Vascular cylinder in petiolute, crystals of one type, stellate trichomes

Harpullia
1. Node - unilacunar, one traced, adaxial hypoderm in leaf

Cupania

KEY TO THE GENERA OF ANACARDIACEAE

1. Epidermis papillose

2. Node multilacunar, multi-traced, hypoderm none in leaf

Semecarpus

2. Node unilacunar, one-traced, hypoderm in leaf

Holigarna

1. Epidermis not papillose, node trilacunar, three-traced:

3. Leaf isobilateral, amphistomatic

Schinus

3. Leaf dorsiventral, hypostomatic:

4. Petiolule/petiole with collenchyma:

5. Collenchyma hypodermal in petiolule/petiole:

6. Trichomes stellate, glandular hairs many-celled, prominent pits in epidermal cell walls

Lannea

6. Trichomes not stellate, glandular hairs variable

Rhus

5. Collenchyma cortical in petiolule/petiole:
7. Sclerenchymatous patches in a ring, enclosing vascular tissue in petiole; cuticular striations, venation pinnate, eucamptodromous

Buchanania (lanzan)

7. Sclerenchyma absent in petiolule, cuticular striations absent, venation pinnate, brochidodromous

Spondias

4. Petiolule/petiole without collenchyma:

8. Leaf with hypoderm and peltate scales, but without cuticular striations:

Mangifera

8. Leaf without hypoderm and peltate scales, but with cuticular striations:

9. Vascular bundles in petiole/petiolule enclosed by a ring of sclerenchyma, crystals clustered; phloem and pith with secretory ducts, none in cortex; stomata mostly anomocytic

Buchanania (axillaris)

9. Vascular bundles only capped by sclerenchyma, phloem and cortex with secretory ducts, none in pith; stomata anomocytic, anisocytic, tetracytic and actinocytic

Anacardium
KEY TO THE SPECIES OF Rhus

1. Leaf epidermis with cuticular striations
 Rhus mysorensis

1. Leaf epidermis without cuticular striations:
 2. Stomata large, trichomes 1-3 celled, thick-walled, crystals none in petiolule
 Rhus parviflora
 2. Epidermal cell walls not so thick, stomata small, trichomes 1-many celled, solitary and clustered, crystals in petiolule
 Rhus javanica

KEY TO THE SPECIES OF Buchanania

1. Collenchyma cortical in petiole, crystals clustered, trichomes 1-many celled, uniseriate
 Buchanania lanzan

1. Collenchyma absent in petiole, trichomes 1-2 celled, sometimes tufted
 Buchanania axillaris