List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Map of India showing top ten potato producing states. Source: Horticulture Board India, 2010</td>
<td>1</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Estimated crop losses in major crops due to pathogens and pests</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>A schematic view of plant-pathogen interaction (Adapted from Gururani et al. 2012)</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Simplified schematic diagram showing ethylene signalling in plants in response to air, ethylene and STS leading to ethylene sensitive or insensitive phenotype. (a) In air (no ethylene), ethylene receptors are in active state and repress ethylene sensitive responses shown by the plants; (b) In the presence of ethylene, ethylene receptors get inactivated and the repression is relieved resulting ethylene sensitive phenotype; (c) In ethylene atmosphere, presence of STS leads to ethylene insensitive phenotype. STS inactivates receptors by replacing Cu$^{2+}$ with Ag$^+$. This replacement prevents both ethylene binding to the receptor and any conformational change to the receptor needed to relieve ethylene suppression. Adapted from figures in Ciardi and Klee (2001); Guo and Ecker (2004)</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Morphological characteristics of potato cv. Kufri Giriraj</td>
<td>58</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Vector map showing the site of integration of CsTLP and CsPPO (a) pCAMBIA1302::CsTLP construct and (b) pCAMBIA1302::CsPPO construct</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Standard curve of ethylene</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Annealing sites for the primer pair used in the study (drawing not to scale)</td>
<td>96</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Map of pGEM$^\text{®}$-T Easy vector (a) the promoter and multiple cloning sequence of the pGEM$^\text{®}$-T Easy vector (b) (adapted from www.promega.com)</td>
<td>97</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Effect of different concentrations of STS on the growth of in-vitro shoot cultures. Shoot cultures growing in MS medium supplemented with STS of concentration (a) 0 μM; (b) enlarge view of the culture as shown in (a); (c) 4 μM, (d) 6 μM, (e) 8 μM, (f) 10 μM and (g) 12 μM. Photograph was taken after 4 weeks of sub-culture</td>
<td>120</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Influence of different concentrations of silver thiosulfate (STS) in MS basal medium on the growth attributes: (a) shoot length; (b) internodal length; (c) leaf area; (d) root biomass; (e) leaf biomass. Values are the mean of three replicates</td>
<td>121</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Diversification of trichomes (a) leaf of the plant growing in MS basal medium (control); (b) medium supplemented with 4 μM STS; (c) 6 μM STS; (d) 8 μM STS; (e) 10 μM STS and (f) 12 μM STS. HT, hair trichomes; 1°v, primary vein; 2°v, secondary vein; ST, stomata; GT, glandular trichome</td>
<td>123</td>
</tr>
<tr>
<td>Fig 4.4</td>
<td>Vascular pattern (venation) on the abaxial surface of leaves (a) MS basal; (b) MS basal treated with 4 μM STS; (c) higher magnification of a; (d) higher magnification of b showing vein hierarchy. Barr =100μM</td>
<td>124</td>
</tr>
</tbody>
</table>
for (a and b) and 20 μM for (c and d). 1ºv, 2ºv, 3ºv and 4ºv were symbolic to primary, secondary, tertiary and quaternary veins, respectively.

Fig. 4.5 Ethylene production by the shoot cultures under hermetic culture conditions. *In vitro* ethylene levels in 60 cm³ culture tube at 0, 3, 4, 8, 10 and 12 day after inoculating shoots in MS basal medium supplemented without (control) and with STS (4 μM).

Fig. 4.6 Relative growth of potato shoot cultures on MS basal medium with (+) and without (-) STS (4 μM) at (a) 0; (b) 4; (c) 8 and (d) 14 dai; (e), inset shows epinasty (Ep) and aerial roots (Ar) at 8 dai when ethylene is produced in medium without STS.

Fig. 4.7 q-RT-PCR analysis. Relative transcript levels of *StERS1* of *in vitro* plants growing in the STS (4 μM) supplemented MS basal medium under ethylene atmosphere (S4) and *in vivo* plants growing in the field (SF). Values are the average fold difference of *in vitro* (STS treated) and *in vivo* (field grown) plants relative to *in vitro* plants growing in MS basal medium. Relative transcript values are mentioned on the top of bars. Standard errors of the means are represented by the error bars. Values on the top of the bar represented relative expression ratio.

Fig 4.8 Different combinations of auxin and cytokinin alone and in combinations tried to assess regeneration system in potato cv. KG. Values around the segment portion represents number of variable concentrations corresponding to each pair of PGRs used.

Fig. 4.9 Internodal explants showing friable callus at the cut ends in cv. Kufri Giriraj (a) and Kufri Sutlej (b) on MS basal medium. Arrow indicated appearance of friable callus at cut end of internodal explants.

Fig. 4.10 HPLC Chromatogram of IAA Standard (a) IAA from internodes of cv Kufri Sutlej (KS) (b) IAA from internodes of cv. Kufri Giriraj (KG) (c) IAA content (μg g⁻¹ FW) in the internodes of cvs. KG and KS (d) endogenous IAA content in cvs. KG and KS. Vertical bars are the mean of 3 replicates and value above the bars are the amount of IAA (μg g⁻¹ FW).

Fig. 4.11 Adventitious shoot regeneration in potato cv. KG. Shoot regeneration in MS basal medium supplemented with: (a) BAP (0.05 mg l⁻¹) and 10% coconut milk, (b) TIBA (0.50 mg l⁻¹) along with zeatin (0.10 mg l⁻¹), (c) shoot regeneration in NAA and zeatin media combination after giving a pulse of TIBA and zeatin to induce shoot bud formation. Abbreviations used: RS, regenerated shoots.

Fig 4.12 Schematic presentation of a two step regeneration protocol for cv. KG.
Colony PCR analysis of *Agrobacterium tumefaciens* strain GV3101 transformed with binary vector pCAMBIA1302. (a) Confirmation of presence of *CsTLP* gene in transformed *Agrobacterium tumefaciens* strain GV3101. Lane 1-8, 681 bp amplicon of *CsTLP* gene in all the eight colonies and B, Negative control (pCAMBIA1302 without *CsTLP* gene); P, plasmid harboring *CsTLP* construct treated as positive control. (b) Confirmation of presence of *CsPPO* in transformed *Agrobacterium tumefaciens* strain GV3101. Lane M, 1 kb DNA ladder; lane 1-8, 1.8 kb amplicon of *CsPPO* gene in all the eight colonies; P, plasmid harbouring *CsPPO* gene treated as positive control and B, negative control (pCAMBIA1302 without *CsTLP* gene).

Effect of mode of infection on the appearance of *Agrobacterium* growth around the internodal explants. Upper panel: Immersion method of infection, lower panel: Touch-dry method of infection. Abbreviations: PRM1 and PRM2, step 1 and 2 regeneration medium, respectively, cefotaxime (500 mg l\(^{-1}\)), CF, cefotaxime and CC, co-cultivation. *Agrobacterium* growth represented by ‘+’ signs

Determination of hygromycin concentration to maintain an effective selection pressure. Growth of internodal explants on regeneration medium supplemented with hygromycin concentration: (a) 0 mg l\(^{-1}\); (b) 5 mg l\(^{-1}\); (c) 10 mg l\(^{-1}\); (d) 15 mg l\(^{-1}\) and (e) 20 mg l\(^{-1}\)

Rooting of putative *CsTLP* transgenic plants in hygromycin (20 mg l\(^{-1}\)) containing MS medium. WT (+) represented un-transformed (WT) growing in the presence of hygromycin; WT (-); un-transformed (WT) growing in the absence of hygromycin; TL1, TL2, TL3 and TL4 were putative *CsTLP* plants growing in the presence of hygromycin

PCR analysis to confirm the presence of *CsTLP* in transgenic plants. Lane P, amplification of 681 bp *CsTLP* in plasmid (+ve control); lane M, 100 bp DNA ladder; lane C, DNA from WT plants; lane TL1-TL4, DNA from *CsTLP* transgenic plants showing 681 bp amplification. The amplification and size indicated by arrow

Slot blot analysis of PCR positive *CsTLP* transgenic potato plants with 45ng of total DNA loaded onto hybond N+ membrane. Lane1-4, genomic DNA of TL1-TL4 transgenic potato pants showing positive signal of hybridization; lane 5; genomic DNA from untransformed plant as negative control; lane 6, plasmid harboring *CsTLP* as positive control.

Southern blot analysis of genomic DNA digested with *Hind* III and probed with biotin labeled eluted *CsTLP* PCR product. Lanes represented: WT, untransformed potato plants; TL1–TL4, *CsTLP* transgenic potato plants; UP, un-cut plasmid harboring *CsTLP*; EF, eluted gene specific *CsTLP* fragment
Fig. 4.20 Confocal images of GFP fluorescence in root tips of *in vitro* raised *CsTLP* transgenic plants (TL1-TL4). Arrow-heads indicated GFP signal only. Along the row (left to right) for each transgenic line: Fluorescence image, bright-field image and merged image. Merged image was obtained by overlaying GFP fluorescence signal over bright-field. Objective 40X

Fig. 4.21 Semi-quantitative PCR analysis of *CsTLP* transgenic plants. Expression of *CsTLP* in transgenic lines (TL1-TL4) using CsTLP gene specific primers. 26SrRNA was used as an internal control of expression to show that equal amounts of RNA were used in the analysis

Fig. 4.22 Morphological analysis of *CsTLP* transgenic plant microtubers. Upper panel from left to right, micro-tuber initiation in WT, TL1 and TL2. Lower panel from left to right, morphology of WT, TL1, TL2 micro-tubers

Fig. 4.23 Disease phenotype analysis at tuber harvesting. Left panel, Disease susceptible phenotype exhibited by WT tubers (intact and sliced tuber); Middle and right panel, disease resistant phenotype exhibited by TL1 and TL2 tubers, respectively

Fig. 4.24 Isolation of pure culture of un-known fungus in Potato Dextrose Agar (PDA) medium (a) No fungal growth around the slice taken from healthy tuber; (b) fungal growth around the infected tuber slice (WT); (c) pure fungal culture; (d) pathogenicity of isolated pure fungal culture

Fig. 4.25 Molecular characterization of fungus. (a) Genomic DNA isolation from mycelia harvested from pure culture of FIHB fungal strain; (b) PCR amplification of ITS regions from genomic DNA of fungal isolates; (c) colony PCR confirming the transformation of insert

Fig. 4.26 Phylogenetic tree showing relationship among *Macrophomina phaseolina* strain FIHB 1579 and representatives of some related taxa, based on Internal Transcribed Spacer (ITS) region sequence. The numbers on the nodes indicated how often (number of times, %) the species to the right are grouped together in 1000 bootstrap samples. Bar = 0.2 substitution per site

Fig. 4.27 Tuber bioassay for resistance against charcoal rot caused by *Macrophomina phaseolina*, in WT and *CsTLP* transgenic potato tubers. In the photograph, (a) showing the health of tubers at the beginning of the experiment i.e. on day 0. (b) Physical condition of the excised tubers after 3 weeks of *M. phaseolina* inoculation. Abbreviations: C1, tuber skin control; C2, assay control; IN, tuber inoculated with *M. phaseolina*; WT, un-transformed potato; TL1, *CsTLP* transgenic line 1; TL2, *CsTLP* transgenic line 2. Arrow indicates the ingress or and damage caused by the *M. phaseolina*. Necrotized lateral eyes (%) and discoloration of tuber pith (%) were shown in Table 4.10
Fig. 4.28 Effect of crude leaf extract of un-transformed (WT) and CsTLP transgenic potato plants (TL1 and TL2) on the mycelial growth of *M. phaseolina*. (a) Mycelial growth of *M. phaseolina* after 72 hr of culture. (b) Average colony diameter (in centimetres) of *M. phaseolina* (data represent mean ± SE; mean obtained by averaging results from three independent experiments each consisting of five petriplates for each of control and treatments. Uncommon letters on the top of the bar were significant different at $P \leq 0.05$. Abbreviations used: C1, potato dextrose agar (PDA) medium; CB, C1 supplemented with 1 ml of filter sterilized (FS) extraction buffer; WTC, C1 supplemented with 1 ml of boiled (10 min) WT leaf extract; WTLE, C1 supplemented with 1 ml of filter sterilized crude leaf extract of WT plants; TL1C, C1 supplemented with boiled crude leaf extract (1 ml) of TL1 plants; TL1LE, C1 supplemented with 1 ml of filter sterilized crude leaf extract of TL1 plants; TL2C, C1 supplemented with boiled crude leaf extract (1 ml) of TL2 plants; TL2LE, C1 supplemented with 1 ml of filter sterilized crude leaf extract of TL2 plants

Fig. 4.29 qRT-PCR analysis. (a) Relative expression of *CsTLP* in transgenic potato tubers (TL1 and TL2) relative to WT tubers. Values were the average fold difference of non-inoculated tubers of TL1 and TL2 relative to non-inoculated WT tubers. Relative expression of *StLOX*, *StPAL*, and *StTLP* in tubers of WT (b); TL1 (c) and TL2 (d) at 2, 4 and 8 dpi with *M. phaseolina* relative to their respective mock inoculated control tubers. Standard errors of the means were represented by the error bars. Values on the top of the bar represented relative expression ratio

Fig. 4.30 Alignment of amino acid sequence of *Nicotiana tabacum* osmotin (NtOsmotin, AAA34089) with *Camellia sinensis* thaumatin-like protein (CsTLP, ABE01396) using ClustalW

Fig. 4.31 *Phytophthora infestans* inoculum preparation. (a) Growth of *P. infestans* over the slices of Kufri Chander Mukhi (KCM), white arrow showing cottony growth of the *P. infestans*; (b) Intact sporangia detached from *P. infestans* mycelia marked by yellow arrow; (c) zoospores released from the sporangium by cold shock treatment and red color arrow showing release of zoospores; (d) empty sporangium shown by white color arrow

Fig. 4.32 Inoculation of detached leaflets with *P. infestans*. Development of disease symptoms (appearance of lesion, its necrotization and chlorosis around the site of inoculation) after inoculation with *P. infestans* in KCM (late blight susceptible Kufri cv.), un-transformed potato plants (WT), CsTLP transgenic line 1 (TL1) and CsTLP transgenic line 2 (TL2). Upper row showing late blight symptoms at 2-day post inoculation (dpi); middle row at 5 dpi and lower row at 10dpi. Arrow in the center of abaxial surface of leaflet showed the necrotization caused by *P. infestans* in the leaves of KCM, WT, TL1, and TL2 plants

Fig. 4.33 Changes in the electrical conductivity of soil (ECsoil) under different moisture regimes. In the Y-axis critical moisture value (CMV) was highlighted at which ECsoil approached zero
Fig. 4.34 Changes in leaf Relative Water Content (RWC) of WT and CsTLP transgenic plants (TL1 and TL2) at different days of water withholding (DOWW). Pots were well watered at day zero.

Fig. 4.35 Morphological behaviour of WT and CsTLP transgenics (TL1 and TL2) plants at different days of withholding water (DOWW). Response of plants at day (a) 0 (well irrigated control); (b) 3 DOWW; (c) 6 DOWW; (d) 9 DOWW; (e) 12 DOWW and (f) 15 DOWW.

Fig. 4.36 Changes in leaf proline content of WT and CsTLP transgenic plants (TL1 and TL2) at 3-15 days of water withholding. Day zero plants were fully irrigated.

Fig. 4.37 Leaf carbohydrate content analysis under water stress. Changes in WT and CsTLP plants under water stress period for (a) starch content (b) reducing sugars (c) total soluble sugars (TSS). Error bars were ±SEM. Uncommon letters on the top of bar were statistically different at $P \leq 0.05$.

Fig. 4.38 Starch plate assay showing the expression of amylase activity in WT and CsTLP transgenic plants (TL1 and TL2) at different DOWW. Clear zone around the wells 0d, 3d, 6d, 9d, 12d and 15d corresponds to the amylase activity at 0, 3, 6, 9, 12 and 15 DOWW. Well B represented as control in all the three starch plates in which autoclaved leaf extract of respective plants were poured and well E represented another control in which filter sterilized buffer was poured.

Fig. 4.39 Gas-exchange responses of plants to an imposed water stress period. (a) stomatal conductance (g_s); (b) net photosynthetic rate (PN) in WT and CsTLP transgenic plants (TL1 and TL2). Error bars were ±SEM. Uncommon letters on the top of bar were statistically different at $P \leq 0.05$.

Fig. 4.40 Relationship between PN and g_s in WT, TL1 and TL2 in response to water stress.

Fig. 4.41 Chlorophyll fluorescence in WT and transgenic plants in response to water stress. Pots were well irrigated at day zero. Error bars ± SEM.

Fig. 4.42 Scanning electron micrograph of isolated starch from (a) WT and (b) TL1 tubers.

Fig. 4.43 Effect of storage at cold temperature (4°C) on the tubers of WT and TL1 plants. (a) Sprouting behaviour in WT and TL1 plant tubers; (b) shriveled tubers of WT and TL1 plants. Arrow indicated shriveled potatoes.

Fig. 4.44 Selection of putative CsPPO transgenic plant in hygromycin containing MS medium. (a) Growth and rooting shown by the CsPPO transgenic plant (TP) in the presence of hygromycin (20 mg l$^{-1}$). Arrow indicated the rooting in TP plant. (b) un-transformed (WT) plant, failed to grow and eventually died in the presence of hygromycin.

Fig. 4.45 PCR analysis to confirm the presence of CsPPO in TP plants using CsPPO specific primers. Lane represented: B, PCR negative control (no template DNA); P, plasmid DNA harboring CsPPO showing amplification; TP, genomic DNA from CsPPO transgenic plant showing amplification; C, DNA from un-transformed potato plant. Amplification product and their size were indicated by arrow.
Fig. 4.46 DNA slot blot analysis of PCR positive TP plant with 45ng of total DNA loaded onto hybond N+membrane. Lane1: plasmid harboring CsPPO as positive control; lane 2, genomic DNA of TP transgenic potato pant showing positive signal of hybridization; lane 3, genomic DNA from WT plant

Fig. 4.47 Semi-quantitative PCR analysis of CsPPO transgenic plants. Lane 1 (upper panel and lower panel), expression of CsPPO in WT plants using CsPPO gene specific primers and 26SrRNA primers; lane 2 (upper and lower panel) expression of CsPPO in TP plants using CsPPO gene specific primers and 26SrRNA primers. 26SrRNA was used as an internal control of expression to show that equal amounts of RNA were used in the analysis

Fig. 4.48 Specific PPO activity in leaf and stem of in vitro plants. Abbreviations used: TP leaf and TP stem, leaf and stem of in vitro TP plants, respectively; WT leaf and WT stem, leaf and stem of in vitro WT plants, respectively

Fig. 4.49 Induction of micro-tuberization. Plants showing microtuberization (a) WT (b) TP plants

Fig. 4.50 Phenotype analysis of WT and TP plants. Growth of WT and TP plants at: (a) polyhouse (b) morphology of harvested WT and TP tubers