CONTENTS

Dedication ii
Certificate iii
Declaration iv
Preface v
Acknowledgements vii
List of Publications ix
List of Figures xiv
List of Tables xv

1 Environmental Radiation and Health Effects 1
 1.1 Introduction 1
 1.2 High Background Radiation Areas (HBRA) 5
 1.2.1 HBRA in Iran 6
 1.2.2 HBRA in Brazil 7
 1.2.3 HBRA in China 8
 1.2.4 HBRA in India 9
 1.3 Health Effects of Ionizing Radiation 11
 1.3.1 Stochastic Effects 13
 1.3.2 Deterministic Effects 15
 1.4 Radiation as a Health Concern 20
 1.5 Significance of the Present Study 22
 1.6 Objectives of the Study 24
References 25

2 Locale and Methodology 30
 2.1 Region of Study 30
 2.2 Latlong Details of the Study Area 31
 2.3 Maps of the Study Area 31
 2.4 Demography of Kollam District 33
3 Inhalation Dosimetry

3.1 Radon

3.2 Probable Health Effects of Radon Exposure

3.3 Radiological Parameters Related to Radon
 3.3.1 Absorbed Dose
 3.3.2 Equivalent dose
 3.3.3 Effective Dose

3.4 Inhalation Dosimetry

3.5 SSNTD Based Twin Cup Dosimeter

3.6 Solid State Nuclear Track Detector
 3.6.1 Types of Etched Track Detectors
 3.6.2 LR-115 Type II Pelliculable Film
 3.6.3 Detector Calibration

3.7 Indoor Dosimetry Using SSNTDs
 3.7.1 Field Visit
 3.7.2 Chemical Etching
 3.7.3 Scanning of Etched Track Detectors Using Spark Counter

References
4 External Gamma Dosimetry

4.1 Major Sources of External Gamma Dose

4.2 External Gamma Dose Measurement Techniques

4.2.1 Active Detectors

4.2.1.1 Gas-filled Detectors

4.2.1.2 Ionization Chamber

4.2.1.3 Proportional Counter

4.2.1.4 Geiger-Muller Counter

4.2.1.5 Scintillation Detector

4.2.1.6 Semiconductor Detector

4.2.2 Passive Detectors

4.2.2.1 Film Badge Dosimeter

4.2.2.2 Luminescence Dosimetry

4.3 Widely Used Thermoluminescent Detectors

4.3.1 Lithium Fluoride Thermoluminescence Dosimetry

4.3.2 Calcium Fluoride Thermoluminescence Dosimetry

4.3.3 Aluminium Oxide Thermoluminescence Dosimetry

4.3.4 Calcium Sulphate Thermoluminescence Dosimetry

4.4 External Gamma Dosimetry Using CaSO₄: Dy TLDs

4.4.1 The TLD Assembly

4.4.2 Preparation of TL Dosimeters

4.4.3 Annealing of Dosimeters

4.4.4 Preparation of TLD badge

4.4.5 Deployment of the TLDs

4.4.6 Scanning of Exposed TLDs

4.4.7 Calibration of TLDs

4.4.8 Estimation of External Gamma Dose

4.5 Active Measurement of Gamma Dose

4.6 Data Validation between TLD and Survey Meter Readings

References
5 **Results and Discussion** 107

5.1 Statistics of Cases and Controls 107
 5.1.1 Panchayat-wise Distribution of Congenital Malfunctions 108
 5.1.2 Age Limits of Cases 109

5.2 Results of Inhalation and External Dosimetry 111

5.3 Statistical Analysis 157

5.4 Inferences from the Frequency Table 162

5.5 Results of Conditional Logistic Regression Analysis 163

5.6 Deductions from Regression Analysis 166

6 **Studies on Pinhole Dosimeter and Conclusions** 167

6.1 Thoron Discrimination Using Diffusion Barriers 167

6.2 Gas Diffusion Mechanism 170

6.3 Fick’s Law of Diffusion 171

6.4 Application of Fick’s Law to Pinhole Dosimeter 173

6.5 Comparative Study between the Membrane and the Pinhole Dosimeters 176

6.6 Conclusions 179

6.7 Limitations of the Study 179

References 180
List of Figures

1.1 Prominent high background radiation areas on the globe and their absorbed dose rates according to UNSCEAR 2000 11
2.1 The state of Kerala indicating the area of investigation 32
2.2 The exact locations (Panchayats) where the study is conducted 33
3.1 Decay series of radium 51
3.2 Decay series of thorium 52
3.3 Block diagram of solid state nuclear track detector based dosimeter 62
3.4 Twin cup dosimeter and its components 63
3.5 Constant temperature etching unit 70
3.6 Photograph of the spark counter 71
4.1 Diagram of a gas ionization detector 81
4.2 Diagram of a scintillation detector 84
4.3 A model of thermoluminescence process 90
4.4 A photograph of card based TLD using CaSO\textsubscript{4}: Dy phosphor 95
4.5 Screenshot of a typical glow curve 98
4.6 TLD calibration curve 99
4.7 GM tube based survey meter 101
4.8 Correlation between TLD readings and survey meter readings 102
5.1 Statistics of field investigation in a nutshell 111
6.1 A pinhole based twin cup dosimeter 174
6.2 Correlation between pinhole and membrane dosimeters 178
List of Tables

1.1 The average annual effective dose (mSv/y) from different natural sources to the world population

1.2 Very high level natural radiation areas on Earth (potential public exposure ≥ 50mSv/y)

1.3 Epidemiological studies in the high background radiation areas

3.1 Values of the radiation weighting factor for different radiations

3.2 Tissue weighting factors adopted by the ICRP (1990) for use in determining the effective dose equivalent

4.1 Performance characteristic of CaSO₄: Dy based TLD cards

5.1 Panchayat-wise distribution of cases

5.2 Distribution of congenital malfunctions in the different Panchayats

5.3 Number of cases falling in different age categories

5.4 Inhalation and external dose levels of cases and controls

5.5 Basic characteristics of study subject

5.6 Conditional logistic regression analysis of mental retardation and cleft lip/palate

6.1 Track density from the membrane and pinhole compartment
List of Publications

