CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF NOTATIONS</td>
<td>xix</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 Motivation and background

1.2 In-plane behaviour of brick masonry

1.3 Response of masonry structure to earthquake motion

1.4 Aim and objective of the research

1.5 Report organization

2. LITERATURE REVIEW

2.1 General

2.2 Review of previous research on masonry

2.2.1 Brick

2.2.2 Mortar

2.2.3 Brick masonry

2.2.4 Masonry wall

2.2.5 Finite element modeling

2.3 Research gap

2.4 Research methodology

2.4.1 Focus of the research work

2.5 Conclusions obtained from the literature review
3. MATERIAL PROPERTIES OF STRUCTURAL MASONRY

3.1 Introduction
3.2 Fly ash
3.2.1 XRD studies on fly ash
3.3 Brick unit
3.3.1 Clay brick
3.3.2 Fly ash brick
3.3.3 Tests on brick
3.3.3.1 Mass of brick
3.3.3.2 Water absorption test
3.3.3.3 Initial rate of absorption (IRA)
3.3.3.4 Compressive strength of the brick
3.3.3.5 Flexural strength of the brick
3.3.3.6 Elastic property of the brick
3.4 Mortar
3.4.1 Compressive strength of the mortar
3.4.4.1 Fly ash as a substitute for cement in the mortar
3.4.4.2 Fly ash as a substitute for fine aggregate in the mortar
3.4.4.3 Improving earthquake resistance behaviour of masonry buildings
3.5 Reinforcement
3.6 Masonry assemblages
3.6.1 Compressive strength of the brick masonry
3.6.2 Elastic property of the brick masonry
3.6.3 Bond strength of the brick masonry
3.7 Conclusions

4. EXPERIMENTAL INVESTIGATIONS ON MASONRY WALLS

4.1 Introduction
4.2 Objective of the test programme
4.3 Description of the specimen
4.4 Axial strength of the brick masonry
4.5 In-plane shear test methods
4.5.1 Shear-compression test 99
4.5.2 Diagonal compression test 99
4.6 Wall under in-plane shear-compression test 100
4.6.1 Shear-compression test - Experimental set up 101
4.6.2 Vertical load calculation on the masonry building during an earthquake 102
4.6.3 Response of masonry wall panels under shear-compression test 103
4.6.3.1 Unreinforced clay brick masonry wall panels under shear-compression test 103
4.6.3.2 Reinforced clay brick masonry wall panels under shear-compression test 107
4.6.3.3 Unreinforced fly ash brick masonry wall panels under shear-compression test 109
4.6.3.4 Reinforced fly ash brick masonry wall panels under shear-compression test 113
4.6.3.5 Principal stress on masonry walls approaching failure under shear-compression test 116
4.7 Wall under in-plane diagonal compression test 118
4.7.1 Diagonal compression test - Experimental set up 118
4.7.2 Response of masonry wall panels under diagonal compression test 119
4.7.2.1 Unreinforced clay brick masonry wall panels under diagonal compression test 119
4.7.2.2 Reinforced clay brick masonry wall panels under diagonal compression test 122
4.7.2.3 Unreinforced fly ash brick masonry wall panels under diagonal compression test 125
4.7.2.4 Reinforced fly ash brick masonry wall panels under diagonal compression test 127
4.7.2.5 Principal stress on masonry walls approaching failure under diagonal compression test 132
4.8 In-plane shear resistance of the masonry wall panel 135
4.8.1 Wall capacity in retaining in-plane shear load in seismic zones in India 141
4.9 Cost analysis 143
4.10 Conclusions 148

5. FINITE ELEMENT MODELING 150
5.1 Introduction 150
5.2 Formulation of the model 151
5.3 Micro level modeling of the brick masonry 153
5.4 Meso level modeling of the brick masonry 155
5.5 Macro level modeling of the brick masonry 157
5.6 In-plane shear strength of the brick masonry wall 158
5.7 Conclusions 164