CONTENTS OF THESIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>ORGANIZATION OF THE THESIS</td>
<td>ix</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Importance of cooling in gas turbine blades 1
1.2 Broad concepts of cooling of turbine blades 2
1.3 Turbine blade cooling methodologies 3
1.4 Turbine blade cooling design 5

CHAPTER 2 LITERATURE REVIEW

2.1 State of the art in gas turbine blade cooling 9
2.2 General conclusion and identification of research gaps 69
2.3 Research objectives for the present research work 70

CHAPTER 3 THEORETICAL AND NUMERICAL FORMULATION FOR TURBINE BLADE COOLING

3.1 Domain geometry 71
3.2 Theoretical governing differential equations 72
3.3 Numerical modeling: Grid generation 75
3.4 Boundary conditions 78
3.5 Experimental validation of computational model 80

CHAPTER 4 CONJUGATE HEAT TRANSFER ANALYSIS IN THE VICINITY OF THE LEADING EDGE OF THE TURBINE BLADE 84
4.1 Scope 84
4.2 Computational domain for the analysis 84
4.3 Results and discussions 85
4.4 Blade cooling with helicoidal duct of circular cross section
\(\bar{D} = 0.66 \) with \(\bar{P} = 1 \) having turbulators 102
4.5 Results and discussions 103
4.6 Conclusions 118

CHAPTER 5 FLUID-STRUCTURE INTERACTION STUDY IN THE VICINITY OF THE LEADING EDGE OF THE TURBINE BLADE 119
5.1 Scope 119
5.2 General geometric model of the blade with helicoidal cooling duct 119
5.3 Results and discussions 120
5.4 Conclusions 127

CHAPTER 6 CONJUGATE HEAT TRANSFER ANALYSIS IN THE VICINITY OF THE TRAILING EDGE OF THE TURBINE BLADE 128
6.1 Scope 128
6.2 Computational domain for the analysis 128
6.3 Results and discussions 130
6.4 Conclusions 140

CHAPTER 7 FLUID-STRUCTURE INTERACTION STUDY IN THE VICINITY OF THE TRAILING EDGE OF THE TURBINE BLADE 141
7.1 Scope 141
7.2 General geometric model of the blade with grooved cooling passage 141
CHAPTER 8 OPTIMUM DESIGN OF HP STAGE BLADE BASED ON
MAXIMUM COOLING RATE AND MINIMUM DEFORMATION
OF THE STRUCTURE 148

8.1 Scope 148

8.2 Conjugate heat transfer analysis of the blade having cooling
ducts in the vicinity of both leading and trailing edge regions 150

8.3 Results and Discussions 151

8.4 Fluid structure interaction analysis of the blade having cooling
ducts in the vicinity of both leading and trailing edge regions 153

8.5 Results and Discussions 153

8.6 Conclusion 157

GENERAL CONCLUSIONS FROM THE PRESENT WORK 159

SCOPE FOR FURTHER RESEARCH 160

BIBLIOGRAPHY 161

RESEARCH OUTPUT FROM THE PRESENT WORK 177

PROFILE OF THE CANDIDATE AND RESEARCH SUPERVISORS 179