<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Figure Caption</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Flowchart for ferrite and magnetodielectric composite synthesis procedure</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>(a),(b) and (c) XRD patterns for cobalt ferrite nanoparticles sintered at 600°C, 700°C and 800°C and (d),(e) and (f) XRD patterns for nickel ferrite nanoparticles sintered at 600°C, 700°C and 800°C</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>(a),(b) and (c) TEM images of cobalt ferrite nanoparticles sintered at 600°C, 700°C and 800°C, respectively and (d),(e) and (f) TEM images of nickel ferrite nanoparticles sintered at 600°C, 700°C and 800°C, respectively</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>(a),(b) and (c) SEM images of Cobalt ferrite nanoparticles for 1%, 3% and 5% VF respectively and (d),(e) and (f) SEM images of Nickel ferrite nanoparticles for 1%, 3% and 5% VF respectively</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of thermal conductivity measurement set-up</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>VSM curve for 1%, 3% and 5% VF (a) cobalt ferrite/LDPE composite (b)nickel ferrite/LDPE composite</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic showing spin canting mechanism</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic of in-touch superstrate technique</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Fragmented structure of the test setup</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Fragmented schematic structure with dimensions</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>(a) Critical coupling co-efficient for different structure considerations of cobalt ferrite/LDPE nano magnetodielectric composite and (b) Critical coupling co-efficient for different structure considerations of nickel ferrite/LDPE nano magnetodielectric composite</td>
<td>39</td>
</tr>
</tbody>
</table>
3.5 (a) Real part and imaginary part of complex permittivity for cobalt ferrite/LDPE nano magnetodielectric composite using ITS technique
(b) Real part and imaginary part of complex permittivity for nickel ferrite/LDPE nano magnetodielectric composite using ITS technique

3.6 (a) Tan δ of cobalt ferrite/LDPE nano magnetodielectric composites computed using In-touch superstrate technique
(b) Tan δ for and nickel ferrite/LDPE nano magnetodielectric composite computed using In-touch superstrate technique

3.7 (a) Fractional resonant frequency change for cobalt ferrite/LDPE and nickel ferrite/LDPE nano magnetodielectric composite
(b) Fractional change for effective dielectric constant due to superstrate

3.8 TE103 rectangular resonant cavities with tuning screw and iris hole

3.9 (a) Photograph of measurement system of transmission/reflection method with rectangular shape material inserted
(b) Schematic representing S11 and S21

3.10 TRL calibration schematic for X-band microwave characterization set up using Agilent E8362C VNA

3.11 (a) Real part of complex permittivity for cobalt ferrite/LDPE composite using Nicholson Ross technique
(b) Real part of complex permittivity for nickel ferrite/LDPE composite using Nicholson Ross technique

3.12 (a) Imaginary part of complex permittivity of cobalt ferrite/LDPE composite using Nicholson Ross technique
(b) Imaginary part of complex permittivity for nickel ferrite/LDPE composite using Nicholson Ross technique

3.13 (a) Interphase boundary between filler and polymer
(b) A sphere of radius a having permittivity \(\varepsilon_{\text{filler}} \) in a medium having permittivity \(\varepsilon_{\text{filler}} \) with \(\varepsilon_{\text{filler}} > \varepsilon_{\text{polymer}} \)

3.14 Schematic showing interphase layer of developed magnetodielectric composites
3.15 (a) Complex permeability for cobalt ferrite/LDPE nano magnetodielectric composite using cavity perturbation technique
(b) Complex permeability for nickel ferrite/LDPE nano magnetodielectric composite using cavity perturbation technique

3.16 (a) Real part of permeability for cobalt ferrite/LDPE nano magnetodielectric composite using Nicholson Ross technique
(b) Real part of permeability for nickel ferrite/LDPE nano magnetodielectric composite using Nicholson Ross technique

3.17 (a) Imaginary part of permeability for cobalt ferrite/LDPE nano magnetodielectric composite using Nicholson Ross technique
(b) Complex permeability for nickel ferrite/LDPE nano magnetodielectric composite using Nicholson Ross technique

4.1 Schematic of S11 measurement

4.2 Antenna S11 parameter measurement set up using VNA

4.3 Antenna radiation pattern measurement set up

4.4 Typical radiation pattern of an antenna showing various parameters

4.5 Schematic showing fringing field responsible for radiation

4.6 S11 of rectangular patch antenna on glass epoxy antenna

4.7 E and H plane radiation pattern of standard glass epoxy substrate antenna

4.8 S11 of rectangular patch antenna on cobalt ferrite/LDPE antenna for different VF. (inset is the photograph of designed patch)

4.9 (a) E and H plane radiation pattern of 1% cobalt ferrite/LDPE antenna
(b) E and H plane radiation pattern of 3% cobalt ferrite/LDPE antenna
4.10 S11 of rectangular patch antenna on nickel ferrite/LDPE for different VF (inset is the photograph of designed patch)

4.11 (a) E and H plane radiation pattern of 1% nickel ferrite/LDPE antenna
(b) E and H plane radiation pattern of 3% nickel ferrite/LDPE antenna
(c) E and H plane radiation pattern of 5% nickel ferrite/LDPE antenna

4.12 Schematic of Orientation of microstrip line with external dc magnetic field

4.13 S11 of rectangular patch antenna on 5% VF cobalt ferrite/LDPE at different external magnetic fields

4.14 (a) S11 of rectangular patch antenna on 5% cobalt ferrite/LDPE VF at external magnetic fields from 2-20 G
(b) S11 of rectangular patch antenna on 5% cobalt ferrite/LDPE VF at external magnetic fields from 25-60 G
(c) S11 of rectangular patch antenna on 5% cobalt ferrite/LDPE VF at external magnetic fields from 65-100 G

4.15 S11 of rectangular patch antenna on 5% VF nickel ferrite/LDPE at different external magnetic fields

4.16 (a) S11 of rectangular patch antenna on 5% nickel ferrite/LDPE VF at external magnetic fields from 4-20 G
(b) S11 of rectangular patch antenna on 5% nickel ferrite/LDPE VF at external magnetic fields from 25-60 G
(c) S11 of rectangular patch antenna on 5% nickel ferrite/LDPE VF at external magnetic fields from 65-100 G

4.17 (a) S11 of rectangular patch antenna on cobalt ferrite/LDPE with varying magnetic field
(b) Resonant frequency of rectangular patch antenna on cobalt ferrite/LDPE with varying magnetic field
(c) S11 of rectangular patch antenna on nickel ferrite/LDPE with varying magnetic field
(d) Resonant frequency of rectangular patch antenna on nickel ferrite/LDPE with varying magnetic field

4.18 Half-wavelength patch with shorting pin at the feed
4.19 Schematic of the designed PIFA and Photograph of designed on magnetodielectric substrate PIFA
4.20 \(S11 \) of the PIFA with different values of \(L_2 \)
4.21 Experimental radiation pattern of the PIFA on 5% nickel ferrite/LDPE with \(L_2 = w \)
4.22 \(S11 \) of PIFA on 5% VF nickel ferrite/LDPE at external magnetic fields with \(L_2 = w \)
5.1 (a) Schematic of the step profile antenna
(b) Schematic with terminology
5.2 Schematic showing field lines for step profile antenna
5.3 Transmission line equivalent circuit theory of the proposed antenna structure on dielectric substrate
5.4 Transmission line equivalent circuit model of the proposed step structure on magnetodielectric substrate
5.5 \(S11 \) of the step profile antenna for different step riser height on magnetodielectric substrate
5.6 (a) E and H plane radiation pattern of EP1 (\(h_1 = 0.5 \text{mm} \)) on magnetodielectric substrate
(b) E and H plane radiation pattern of EP2 (\(h_1 = 1 \text{mm} \)) on magnetodielectric substrate
(c) E and H plane radiation pattern of EP3 (\(h_1 = 1.5 \text{mm} \)) on magnetodielectric substrate
5.7 \(S11 \) of the step profile antenna for different step tread length on magnetodielectric substrate
5.8 (a) E and H plane radiation pattern of EP4 (\(w' = 0.5 \text{ mm} \)) on magnetodielectric substrate
(b) E and H plane radiation pattern of EP5 (\(w' = 0.75 \text{ mm} \)) on magnetodielectric substrate
(c) E and H plane radiation pattern of EP6 (\(w' = 1 \text{ mm} \)) on magnetodielectric substrate
5.9 \(S11 \) of the step profile antenna for different step riser height on glass epoxy substrate
5.10 (a) E and H plane radiation pattern of EP1 (\(h_1 = 0.5 \text{mm} \)) on glass epoxy substrate
(b) E and H plane radiation pattern of EP2 (\(h_1 = 1 \text{mm} \)) on glass
epoxy substrate
(c) E and H plane radiation pattern of EP3(\(h_1=1.5\text{mm}\)) on glass epoxy substrate

5.11 S11 of the step profile antenna for different step tread length on glass epoxy substrate

5.12 (a) E and H plane radiation pattern of EP4 on glass epoxy substrate
(b) E and H plane radiation pattern of EP5 on glass epoxy substrate
(c) E and H plane radiation pattern of EP6 on glass epoxy substrate

5.13 Effective permittivity from TLM for different values of \(h_1\) for magnetodielectric substrate

5.14 Theoretical effective permittivity from TLM for different values of \(h_2\) for magnetodielectric substrate

5.15 Resonant frequency from TLM for different values of \(h_1\) for magnetodielectric substrate

6.1 Schematic of single and double T slots patches with dimensions

6.2 Photographs of single and double T slot antenna fabricated on 5% VF nickel ferrite/LDPE substrate

6.3 (a) S11 of single T slot antenna along with simple rectangular patch fabricated on 5% VF nickel ferrite/LDPE planar substrate
(b) S11 of single T slot antenna along with simple rectangular patch fabricated on 5% VF nickel ferrite/LDPE step profile substrate

6.4 E and H plane radiation pattern plots for the single T slot antenna on planar magnetodielectric substrate

6.5 E and H plane radiation pattern plots for the single T slot antenna on step profile magnetodielectric substrate

6.6 (a) S11 of double T slot antenna along with simple rectangular patch fabricated on 5% VF nickel ferrite/LDPE planar substrate
(b) S11 of double T slot antenna along with simple rectangular patch fabricated on 5% VF nickel ferrite/LDPE step profile substrate
6.7 E and H plane radiation pattern plots for the double T slot antenna on planar magnetodielectric substrate

6.8 E and H plane radiation pattern plots for the double T slot antenna on step profile magnetodielectric substrate

6.9 (a) S11 of single T slot antenna fabricated on glass epoxy planar substrate
(b) S11 of single T slot antenna fabricated on glass epoxy step profile substrate

6.10 E and H plane radiation pattern plots for the single T slot antenna on glass epoxy planar substrate

6.11 E and H plane radiation pattern plots for the single T slot antenna on glass epoxy step profile substrate

6.12 (a) S11 of double T slot antenna fabricated on glass epoxy planar substrate
(b) S11 of double T slot antenna fabricated on glass epoxy step profile substrate

6.13 E and H plane radiation pattern plots for the double T slot antenna on glass epoxy planar substrate

6.14 E and H plane radiation pattern plots for the double T slot antenna on glass epoxy step profile substrate

vii