List of Tables

3.1 Calculated values of EFG α_{57}^{57}Fe probe atoms using the charge shift model in various hcp metals and their comparison with experimental results and values of EFG obtained from the systematics for transition metals 86

3.2 The value of e_{ion}, e_{hp} and e_{el} for different c/c values of titanium and different temperatures in units of 10^{12} dynes/cm2. 89

4.1 Observed Mossbauer Parameter and calculated value of EFG for 57FeSe 119

4.2 Experimental and calculated values of EFG in Tellurium 123

4.3 Observed Mossbauer parameters of 53FeNd 127

4.4 Experimental and calculated values of EFG in Neodymium 127

4.5 Experimental and calculated values of EFG in the system CdCd at different temperatures 131

4.6 Experimental and theoretical values of EFG in the system ZnZn at different temperatures 135

4.7 Experimental and theoretical values of EFG in the system InIn at various temperatures 137

4.8 Experimental and theoretical values of EFG in the system SbSb at different temperatures 139

4.9 Experimental and theoretical values of EFG in the system 181TaPd at various temperatures 140

4.10 Experimental and theoretical values of EFG in the system 181TaPd at different temperatures 142
4.11 Experimental and calculated values of EFG for the system 111CdZn at different temperatures.

4.12 Experimental and theoretical values of EFG at Cd in In$_2$Te$_3$ for different temperatures.

4.13 Experimental and theoretical values of EFG in CdTe at various temperatures.

4.14 Experimental and theoretical values of the quadrupole interaction frequency in the insulator Hff$_4$.HF.2H$_2$O at various temperatures.

4.15 The value of transition temperature from localization phase to vibrational phase and the value of slope in the two phases.

4.16 Experimental and theoretical values of EFG in the superconductor YBa$_2$(Cu$_{0.92}$Fe$_{0.1}$)$_3$O$_y$.

4.17 Experimental and theoretical values of EFG in the superconductor GdBa$_2$Cu$_{2.85}$Fe$_{0.15}$O$_{7-\delta}$

4.18 Experimental and theoretical values of EFG in the superconductor Bi$_2$Si$_4$Fe$_3$O$_{12-\delta}$
List of Figures

1.1 Effect of monopole interaction on the energy levels of source and absorber. 7
1.2 Magnetic hyperfine splitting of 57Fe 10
1.3a Quadrupole splitting in 57Fe with spin I=3/2 in the excited state 18
1.3b Quadrupole split Mossbauer spectrum with isomer shift 18
1.4 Magnetic hyperfine splitting without and with electric Quadrupole interaction 22
2.1 The Block diagram of the Mossbauer Spectrometer 31
2.2 Schematic diagram of the electromechanical transducer 33
2.3 Design of the furnace with resistance heating assembly 36
2.4 Schematic diagram of the power oscillator 38
2.5 Schematic design of a vacuum furnace 39
2.6 Control amplifier of temperature controller 41
2.7 Design of the liquid nitrogen dewar used in Mossbauer experiments at temperatures between 80K and 300K 42
3.1 The Universal Correlation discovered by Raghavan etal between local electronic and lattice terms for several pure and impurity systems. 62
3.2 Correlation between the electronic and ionic Contributions to EFG based on recent data 63
3.3a Correlation between the EFG and impurity valence. The ratio (Vzz at impurity/Vzz in pure metal) vs. Impurity valence 66
3.3b Electronic contribution to EFG vs. impurity valence 66
3.4 Charge distribution in an hcp metal idealized for Bodenstedt calculations. 87
3.5 The dependence of EFG in Zinc on the probe used. The solid line represents the production of the charge Shift model. 91
3.6 The dependence on temperature, for impurities in Zn, Of the electronic enhancement factor, defined as the Ratio of the experimentally determined EFG to the Calculated lattice-sum contribution. 93
4.1 Crystal structure of hexagonal selenium. 116
4.2 Mossbauer Spectrum of $^{57}\text{FeSe}$ at room temperature 118
4.3a Tellurium co-ordination (view along 0001 axis) 121
4.3b Crystal structure of tellurium 121
4.4 Temperature dependence of EFG in Tellurium 124
4.5 Mossbauer spectrum of $^{57}\text{Fe Nd}$ at room temperature 126
4.6 Temperature dependence of EFG in the system CdCd 133
4.7 Temperature dependence of EFG in the system ZnZn 134
4.8 Temperature dependence of EFG in the system InIn 136
4.9 Temperature dependence of EFG in the system SbSb 138
4.10 Temperature dependence of EFG in the system RuRu 141
4.11 Temperature dependence of EFG in the system TaPd 143
4.12 Temperature dependence of EFG in CdZn 146
4.13 Temperature dependence of EFG at Cd in In_2Te_3 148
4.14 Temperature dependence of EFG in Cd Te 150
4.15 Temperature dependence of the Quadrupolar interaction frequency in the insulator HfF$_4$.HF. 2H$_2$O 152
4.16 The structure of the single layered compound $\text{La}_{2-x}\text{R}_x\text{CuO}_4$ 158
4.17 The orthorhombic structure of double layered compound $\text{YBa}_2\text{Cu}_1\text{O}_{7-x}$ (YBCO) 159
4.18a. CuO$_x$ lattice showing localized Cu ions with spin -1/2 and a hole with spin indicated by the bold arrow 162
4.18b. Localized ferromagnetic alignment of Cu spins in the vicinity of a mobile hole 162
4.19 Schematic diagram of the resonating valence bond (RVB) state in a spin fluid (a) a lattice of singlets (b) lattice with a spinon quasiparticle and (c) a holon quasi particle. 163
4.20 Temperature dependence of EFG in $\text{YBa}_2(\text{Cu}_{0.92}\text{Fe}_{0.08})_y$ Graph plotted with calculated values. 179
4.21 Temperature dependence of EFG in $\text{GdBa}_2\text{Cu}_{2.85}\text{Fe}_{0.15}\text{O}_{7.8}$ Graph plotted with calculated values. 180
4.22 Temperature dependence of EFG in $\text{Bi}_2\text{Si}_4\text{Fe}_3\text{O}_{12.8}$ Graph plotted with calculated values. 181