List of figures

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Figure Captions</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structural formula and molecular structure of LDPE</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic of composite synthesis</td>
<td>13</td>
</tr>
<tr>
<td>2.3(a)</td>
<td>XRD of Co_{1-x}Ni_{x}Fe_{2}O_{4} (with x = 0, 0.2, 0.4, 0.6, 0.8, 1) annealed at 400°C</td>
<td>15</td>
</tr>
<tr>
<td>2.3(b)</td>
<td>XRD of Co_{1-x}Ni_{x}Fe_{2}O_{4} (with x = 0, 0.2, 0.4, 0.6, 0.8, 1) annealed at 600°C</td>
<td>16</td>
</tr>
<tr>
<td>2.3(c)</td>
<td>XRD of Co_{1-x}Ni_{x}Fe_{2}O_{4} (with x = 0, 0.2, 0.4, 0.6, 0.8, 1) annealed at 800°C</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>TEM images of Co_{1-x}Ni_{x}Fe_{2}O_{4} nanoparticles annealed at 400°C</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>SEM micrographs of 2% v. f. LDPE composite with (a) Co_{0.8}Ni_{0.2}Fe_{2}O_{4}, (b) Co_{0.6}Ni_{0.4}Fe_{2}O_{4}, (c) Co_{0.4}Ni_{0.6}Fe_{2}O_{4} and (d) Co_{0.2}Ni_{0.8}Fe_{2}O_{4} inclusions</td>
<td>20</td>
</tr>
<tr>
<td>2.6</td>
<td>SEM micrographs of 4% v. f. LDPE composite with (a) CoFe_{2}O_{4}, (b) Co_{0.8}Ni_{0.2}Fe_{2}O_{4}, (c) Co_{0.6}Ni_{0.4}Fe_{2}O_{4}, (d) Co_{0.4}Ni_{0.6}Fe_{2}O_{4}, (e) Co_{0.2}Ni_{0.8}Fe_{2}O_{4} and (f) NiFe_{2}O_{4} inclusions</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of thermal conductivity measurement set-up</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Circuit diagram of the transducer system OPAMP = Operational Amplifier, R = Resistance=1KW, T = Transistor</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) A typical initial magnetization curve and hysteresis loop (b) Typical hysteresis loops for hard and soft magnetic material</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>(a) Schematic diagram of B-H loop tracer (b) Hysteresis loop tracer during measurement</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Hysteresis loops for (a) 2% volume fractions and (b) 4% volume fraction for Co_{1-x}Ni_{x}Fe_{2}O_{4}/LDPE composites with x = 0.2, 0.4, 0.6 and 0.8</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Saturation magnetization (M-H) curves for 4% volume fractions of Co_{1-x}Ni_{x}Fe_{2}O_{4}/LDPE composites with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>Saturation magnetization (M-H) curves for 2% volume fractions of Co_{0.6}Ni_{0.4}Fe_{2}O_{4}/LDPE composite</td>
<td>39</td>
</tr>
<tr>
<td>4.1(a)</td>
<td>Photograph of the measurement system</td>
<td>45</td>
</tr>
<tr>
<td>4.1(b)</td>
<td>Schematic of PC - Interfaced automated microwave X band set-up (Shaded blocks are components associated with the manual measurement setup)</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Schematic of shielded conductor-backed coplanar waveguide configuration</td>
<td>46</td>
</tr>
</tbody>
</table>
Electromagnetic field distribution in shielded conductor-backed coplanar waveguide structure

Calibration curve of air over X-band for Real and Imaginary part of:
(a) complex permittivity and (b) complex permeability

Percentage error in measurement of real part of complex permittivity

Percentage error in measurement of real part of complex permeability

Percentage of match efficiency of the conductor-backed coplanar waveguide structure

Real part of the complex permittivity (ε_r') of LDPE and Co$_{1-x}$Ni$_x$Fe$_2$O$_4$ - LDPE ($x = 0, 0.2, 0.4, 0.6, 0.8$ and 1.0) composite with (a) 2% volume fractions and (b) 4% volume fractions

Permittivity loss tangent ($\tan \delta$) of LDPE and Co$_{1-x}$Ni$_x$Fe$_2$O$_4$ - LDPE ($x = 0, 0.2, 0.4, 0.6, 0.8$ and 1.0) composite with (a) 2% volume fractions and (b) 4% volume fractions.

Real part of the complex permeability (μ_r') of LDPE and Co$_{1-x}$Ni$_x$Fe$_2$O$_4$ - LDPE ($x = 0, 0.2, 0.4, 0.6, 0.8$ and 1.0) composite with (a) 2% volume fractions and (b) 4% volume fractions.

Imaginary part of the complex permeability (μ_r'') of LDPE and Co$_{1-x}$Ni$_x$Fe$_2$O$_4$ - LDPE ($x = 0, 0.2, 0.4, 0.6, 0.8$ and 1.0) composite with (a) 2% volume fractions and (b) 4% volume fractions.

Complex permittivity and permeability measurement setup using cavity perturbation technique

(a) TE$_{103}$ and (b) TE$_{102}$ rectangular resonant cavities with tuning screw and iris hole

(a) Three dimensional gridding in FDTD (b) Basic Yee cell in three dimensions

The FDTD implementation domain with external dc magnetic field ($\mu_0 H_0$) at angle θ.

Yee’s mesh

Computational domain of the microstrip line geometry

Three dimensional problem cell

The reflection at the interface of two media

Main modules of 3D FDTD simulation algorithm

Gaussian pulses with pulse widths of various time-steps

Relative power (magnitude) of a Gaussian pulse width vs. frequency for $T_1 = 1$ time step

Gaussian pulses applied at the input port 1
6.1 Microstrip line with the launcher

6.2 (a)-(b) Setup for microstrip transmission response measurement under influence of external dc magnetic field along XZ plane

6.3 (a) Schematic of microstrip line with quasi TEM field distribution (b) Orientation of microstrip line with external dc magnetic field

6.4 Block diagram of a two port network and signal flow graph representation

6.5(a)-(e) Variation of insertion loss of the microstrip line on CoFe$_2$O$_4$-LDPE substrate at different magnitude of μ_0H_0 and different θ. 118-119

6.6(a)-(e) Variation of insertion loss of the microstrip line on Co$_{0.8}$Ni$_{0.2}$Fe$_2$O$_4$-LDPE substrate at different magnitudes of μ_0H_0 and different θ. 119-121

6.6 (a')-(e') Magnified adaption of the notch characteristic of microstrip line on the same substrate. 119-121

6.7 Insertion loss of the microstrip line on Co$_{0.4}$Ni$_{0.6}$Fe$_2$O$_4$-LDPE substrate under influence of external dc magnetic field at an angle (a) $\theta = 0^\circ$ and (b) $\theta = 90^\circ$. 123

6.8(a) - (e) Variation of insertion loss of the microstrip line on Co$_{0.4}$Ni$_{0.6}$Fe$_2$O$_4$-LDPE substrate at different magnitudes of μ_0H_0 and different θ. 124-125

6.8(a') - (e') Magnified adaption of the notch characteristic of microstrip line on the same substrate 124-125

6.9 Insertion loss of the microstrip line on Co$_{0.4}$Ni$_{0.6}$Fe$_2$O$_4$-LDPE substrate under influence of external dc magnetic field at an angle (a) $\theta = 0^\circ$ and (b) $\theta = 90^\circ$. 127

6.10(a) - (e) Variation of insertion loss of the microstrip line on Co$_{0.4}$Ni$_{0.6}$Fe$_2$O$_4$-LDPE substrate at different magnitude of μ_0H_0 and different θ. 128-129

6.10(a')- (e') Magnified adaption of the notch characteristic of microstrip line on the same substrate. 128-129

6.11(a) - (e) Variation of insertion loss of the microstrip line on Co$_{0.3}$Ni$_{0.7}$Fe$_2$O$_4$-LDPE substrate at different magnitude of μ_0H_0 and different θ. 131-132

6.11(a')- (e') Magnified adaption of the notch characteristic of microstrip line on the same substrate. 131-132

6.12(a) - (e) Variation of insertion loss of the microstrip line on NiFe$_2$O$_4$-LDPE substrate at different magnitude of μ_0H_0 and different θ. 133-135

6.12(a')- (e') Magnified adaption of the notch characteristic of microstrip line on the same substrate. 133-135

6.13 Insertion loss of microstrip line on Co$_{0.4}$Ni$_{0.6}$Fe$_2$O$_4$-LDPE at 10 GHz and 10.2 GHz notch with varying magnitude of external magnetic field at (a) $\theta = 0^\circ$ and (b) $\theta = 90^\circ$. 137
6.14 Loaded Q factor of microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$-LDPE with external magnetic field at $\theta = 0^\circ$ and 90° for (a) 10 GHz and (b) 10.2 GHz notch.

6.15 Insertion loss of microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$ - LDPE for 10.2 GHz notch with (a) varying magnitude of external magnetic field at $\theta = 0^\circ$ and $\theta = 90^\circ$ and (b) with varying angle of orientation at 250 G.

6.16 Loaded Q factor of microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$ - LDPE at 10.2 GHz notch with varying magnitude of external magnetic field at $\theta = 0^\circ$ and $\theta = 90^\circ$.

6.17(a)-(d) Coupling coefficients as a function of orientation of applied dc magnetic field for microstrip line on NiFe$_2$O$_4$ - LDPE substrate.

6.18(a)-(b) Coupling coefficients as a function of orientation of applied dc magnetic field for microstrip line on CoFe$_2$O$_4$ - LDPE substrate.

6.18(c)-(d) Coupling coefficients as a function of orientation of applied dc magnetic field for microstrip line on CoFe$_2$O$_4$ - LDPE substrate.

6.19 FDTD method flow chart transmission characteristic calculations

6.20 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on CoFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30$^\circ$ inclination.

6.21 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on CoFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30$^\circ$ inclination.

6.22 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on CoFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90$^\circ$ inclination.

6.23 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on CoFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90$^\circ$ inclination.

6.24 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30$^\circ$ inclination.

6.25 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30$^\circ$ inclination.

6.26 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on Co$_{0.6}$Ni$_{0.4}$Fe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90$^\circ$ inclination.
The FDTD simulated magnetic field components at 10 time steps (a) H_x, (b) H_y and (c) H_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

The FDTD simulated electric field components at 10 time steps (a) E_x, (b) E_y and (c) E_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

The FDTD simulated magnetic field components at 10 time steps (a) H_x, (b) H_y and (c) H_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

The FDTD simulated electric field components at 10 time steps (a) E_x, (b) E_y and (c) E_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

The FDTD simulated magnetic field components at 10 time steps (a) H_x, (b) H_y and (c) H_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

The FDTD simulated electric field components at 10 time steps (a) E_x, (b) E_y and (c) E_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

The FDTD simulated magnetic field components at 10 time steps (a) H_x, (b) H_y and (c) H_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

The FDTD simulated electric field components at 10 time steps (a) E_x, (b) E_y and (c) E_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

The FDTD simulated magnetic field components at 10 time steps (a) H_x, (b) H_y and (c) H_z of the microstrip line on $\text{Co}_{0.6}\text{Ni}_{0.4}\text{Fe}_2\text{O}_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.
6.38 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on Co$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

6.39 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on Co$_{0.2}$Ni$_{0.8}$Fe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

6.40 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on NiFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

6.41 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on NiFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 30° inclination.

6.42 The FDTD simulated electric field components at 10 time steps (a) Ex, (b) Ey and (c) Ez of the microstrip line on NiFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

6.43 The FDTD simulated magnetic field components at 10 time steps (a) Hx, (b) Hy and (c) Hz of the microstrip line on NiFe$_2$O$_4$-LDPE substrate under 100 G external magnetic field applied at 90° inclination.

6.44 Experimental and theoretical (FDTD) insertion loss values for different compositions of the substrate at 40 G and 100 G external magnetic field oriented at (a) 0°, (b) 30° and (c) 90°.

7.1 Reflection-type radial stub resonator (RRSR) structure for enhancement of band width

7.2 a) Geometry of uniform part of the RRSR without stubs
b) Coaxially fed port at the centre of a circular disc

7.3 Detail sketch of a microstrip radial stub

7.4 Circular disc designed at 10 GHz with (a) 8 GHz and 11 GHz radial stubs and (b) 9 GHz and 12 GHz radial stubs.

7.5 Photograph of the circuit configuration of (a) RRSR-8/11 and (b) RRSR-9/12

7.6 Schematic of return loss measurement of RRSR under influence of external magnetic field showing the feeding and orientation planes.

7.7 Experimental arrangement of return loss measurement of RRSR under external magnetic field.

7.8 S22 measurement of RRSR-8/11 over the sweep 1 GHz to 20 GHz with 8 GHz stub placed along X-axis (a) 0 G, (b) 100 G and $\theta = 0^\circ$, (c) 100 G and $\theta = 25^\circ$, (d) 100 G and $\theta = 90^\circ$.
7.9 S22 measurement of RRSR-8/11 over the sweep 1 GHz to 20 GHz with 11 GHz stub placed along X-axis (a) 0 G, (b) 100 G and $\theta = 0^\circ$, (c) 100 G and $\theta = 25^\circ$, (d) 100 G and $\theta = 90^\circ$

7.10 S22 measurement of RRSR-9/12 over the sweep 1 GHz to 20 GHz with 9 GHz stub placed along X-axis at (a) 0 G, (b) 100 G at $\theta = 0^\circ$, (c) 100 G at $\theta = 25^\circ$, (d) 100 G at $\theta = 90^\circ$

7.11 S22 measurement of RRSR-9/12 over the sweep 1 GHz to 20 GHz with 12 GHz stub placed along X-axis at (a) 0 G, (b) 100 G at $\theta = 0^\circ$, (c) 100 G at $\theta = 25^\circ$, (d) 100 G at $\theta = 90^\circ