LIST OF TABLES

Table 2.1 List of some commercially important bamboo species used for consumption of their edible shoots as food in various countries.
Table 2.2 Traditional forms of edible bamboo shoot consumed in different Asian countries.
Table 2.3 Reported traditional FBS products consumed in different geographical regions of North East India.
Table 2.4 Macronutrient, phytochemical, vitamin and micronutrient contents in freshly emerged succulent bamboo shoots of commonly consumed edible species of Bambusa and Dendrocalamus.
Table 2.5 Details of the changes in the nutrient components between fresh shoot and FBS of D. giganteus.
Table 2.6 In-depth investigation of microbial ecology of food fermentation reported by using Illumina and 454 pyrosequencing NGS platforms.
Table 3.1 List of primers and PCR conditions used in the present study for culture-dependent and culture-independent PCR-DGGE based microbial community analyses.
Table 3.2 List of forward and barcoded reverse primers used for amplification of eubacterial SSU rRNA gene V4-V5 region for multiplexed Illumina sequencing.
Table 3.3 Eighty five isolates of L. plantarum originated from various stages of indigenous bamboo shoot fermentation.
Table 3.4 Designed primers and PCR conditions for MLST analysis of L.
Table 3.5 Details of the *L. plantarum* strains from NCBI genome database (as on 10th October 2014) used for MLST analysis.

Table 4.2.1 Theoretical and gel detectable restriction fragments size of SSU rRNA gene of closely related species of *B. subtilis* group.

Table 4.2.2 Taxonomic assignment of isolates belonging to *M. guilliermondii/M. caribbica* ARDRA group by sequencing of LSU rRNA gene D1/D2 domain.

Table 4.2.3 Carbon substrate assimilation pattern of representative strains of *M. guilliermondii/M. caribbica* ARDRA group using API 20 C AUX yeast identification system.

Table 4.2.4 List of the selected type-II restriction endonucleases that differentiated *M. guilliermondii* from *M. caribbica* during *in silico* restriction digestion of ITS1-5.8S-ITS2 amplicon sequences.

Table 4.2.5 Differentiation of ambiguous 55 yeast isolates obtained from *soibum* into *M. guilliermondii* and *M. caribbica*.

Table 4.2.6 DGGE-based microbial diversity brought out by the developed metagenomic DNA extraction method (MII) in comparison with the commercial kit.

Table 4.3.1 Changes in pH, titratable acidity, temperature and culturable microbial population during the indigenous fermentation of *S. munroi* apical shoot meristem for production of *soidon*.

Table 4.3.2 Changes in the cultivable phylotype counts during the indigenous *soidon* fermentation.
Table 4.3.3 rRNA gene nucleotide difference between the probable new species isolates of soidon and the type strain of their closest known species.

Table 4.3.4 Diversity changes during the indigenous soidon fermentation predicted from culture-dependent phylotype abundance data.

Table 4.3.5 Phylogenetic affiliation of eubacterial community associated with soidon fermentation by sequencing of DGGE bands of SSU rRNA gene V3 region.

Table 4.3.6 Diversity changes during the indigenous soidon fermentation predicted from culture-independent DGGE data.

Table 4.3.7 Illumina sequencing statistics and the predicted microbial community diversity of soidon fermentation.

Table 4.4.1.1 Molecular grouping and identification of culturable microbial isolates from soibum fermentation by ARDRA and rRNA gene sequencing.

Table 4.4.1.2 Phylogenetic affiliation of eubacterial community associated with indigenous soibum fermentation by sequencing DGGE bands.

Table 4.4.1.3 Phylogenetic affiliation of yeast community associated with indigenous soibum fermentation by sequencing DGGE bands.

Table 4.4.1.4 Summary of BIAS data and estimated sample coverage (Good’s coverage) for soibum samples analyzed in the present study.

Table 4.4.1.5 Predicted changes in the eubacterial diversity during the multi-phase succession of microbiota in the indigenous soibum fermentation.

Table 4.4.2.1 Molecular grouping and identification of culturable microorganisms
from indigenous *hikhu* fermentation by ARDRA and SSU rRNA gene sequencing.

Table 4.4.2.2 Phylogenetic affiliation of eubacterial community associated with indigenous *hikhu* fermentation by sequencing DGGE bands.

Table 4.4.2.3 Summary of BIAS data and estimated sample coverage (Good's coverage) for *hikhu* samples analyzed in the present study.

Table 4.4.2.4 Predicted changes in the eubacterial diversity during the multi-phase succession of microbiota in the indigenous *hikhu* fermentation.

Table 4.4.3.1 Molecular grouping and identification of culturable microorganisms from indigenous *sele* fermentation by ARDRA and SSU rRNA gene sequencing.

Table 4.4.3.2 Phylogenetic affiliation of eubacterial community associated with indigenous *sele* fermentation by sequencing DGGE bands.

Table 4.4.3.3 Summary of BIAS data and estimated sample coverage (Good's coverage) for *sele* samples analyzed in the present study.

Table 4.4.3.4 Predicted changes in the eubacterial diversity during the multi-phase succession of microbiota in the indigenous *sele* fermentation.

Table 4.5.1 Summary of pairwise PERMANOVA of microbial community among the FBSs.

Table 4.5.2 Summary of SIMPER analysis showing variability in the culturable microbial community structure among the FBSs studied.

Table 4.5.3 Summary of SIMPER analysis showing OTUs that contribute to 50 % variability in the microbial community structure among the FBSs.
as assessed by BIAS.

Table 4.5.4 Counts of samples, amplicon reads and OTUs detected among FBSs after QC in MG-RAST server and filtering of OTUs.

Table 4.5.5 Counts and abundances of predominant core microbiota OTUs (60% threshold) of natural bamboo shoot fermentation at different taxonomic levels.

Table 4.6.1 SfiI-REA-PFGE based grouping of *L. plantarum* isolates into 27 strain types.

Table 4.6.2 MLST details of 36 *L. plantarum* strains analyzed.

Table 4.6.3 Genetic variation in the five MLST loci of 36 *L. plantarum* strains.

Table 4.6.4 Statistical tests for the significant evidence of recombination in the five MLST loci of the 36 *L. plantarum* strains.

Table 4.6.5 Carbohydrate fermentation and enzymatic activity profiles of selected *L. plantarum* strains of FBS origin using API 50 CH and API ZYM.