Chapter 6

$g\delta s$-HOMEOMORPHISMS AND OTHER CONCEPTS

6.1 Introduction

The chapter contains five sections. In the section 2, the concept of a new class of homeomorphisms namely $g\delta s$-homeomorphisms, strongly $g\delta s$-homeomorphisms in topological spaces are introduced and some of their characterizations and properties are studied.

In the section 3, the class of $g\delta s$-quotient, strongly $g\delta s$-quotient and completely $g\delta s$-quotient functions in topological spaces are introduced and some of their properties are obtained.

In the section 4, the concepts of $g\delta s$-compact, countably $g\delta s$-compact and $g\delta s$-Lindelöf by using $g\delta s$-open sets in topological spaces are introduced and investigated some of their properties.

In the last section the concept of $g\delta s$-connectedness is introduced and discussed some of their properties.
6.2 $g\delta s$-homeomorphisms

Definition 6.2.1. A bijective function $f : X \to Y$ is said to be $g\delta s$-homeomorphism if f is both $g\delta s$-continuous and $g\delta s$-open, equivalently, if f and f^{-1} both are $g\delta s$-continuous.

The family of all $g\delta s$-homeomorphism of space X on to itself is denoted by $g\delta s-h(X)$.

Example 6.2.2. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a, b\}\}$ be topologies on X and Y respectively. Define a function $f : X \to Y$ by $f(a) = a$, $f(b) = c$ and $f(c) = b$, then f is bijective, $g\delta s$-continuous and $g\delta s$-open. Therefore, f is a $g\delta s$-homeomorphism.

Remark 6.2.3. Every homeomorphism is a $g\delta s$-homeomorphism. But converse need not be true in general.

Example 6.2.4. In Example 6.2.2, function f is $g\delta s$-homeomorphism but not a homeomorphism. Because for an open set $\{a\}$ in X, $f(\{a\}) = \{a\}$ is not an open set in Y, implies f is not open.

Remark 6.2.5. Every g-homeomorphism is $g\delta s$-homeomorphism. But converse need not be true in general.

Example 6.2.6. Let $X = Y = \{a, b, c\}$, $\sigma = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, b\}\}$ be topologies on X and Y respectively. Then the identity function $f : X \to Y$ is $g\delta s$-homeomorphism but not g-homeomorphism, because for an open set $\{a, c\}$ in X, $f(\{a, c\}) = \{a, c\}$ is not g-open in Y, implies f is not g-open.

Theorem 6.2.7. If $f : X \to Y$ is a bijective and $g\delta s$-continuous, then following statements are equivalent.

(i) f is $g\delta s$-open

(ii) f is $g\delta s$-homeomorphism

(iii) f is $g\delta s$-closed
Proof: (i) \iff (ii) Obvious from definition.

(i)\iff(iii) Suppose f is a $g\delta s$-open function and F is a closed set in X, then $X - F$ is an open set in X. By (i), $f(X - F) = Y - f(F)$ is $g\delta s$-open set in Y. This implies $f(F)$ is $g\delta s$-closed set in Y. Therefore, f is $g\delta s$-closed function.

Remark 6.2.8. The composition of two $g\delta s$-homeomorphisms need not be a $g\delta s$-homeomorphism in general.

Example 6.2.9. Let $X = Y = Z = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{Y, \phi, \{a\}\}$ and $\eta = \{Z, \phi, \{a\}, \{a, b\}\}$ be topologies on X, Y and Z respectively. Define a function $f : X \to Y$ by $f(a) = b$, $f(b) = a$ and $f(c) = c$ and $g : Y \to Z$ by $g(a) = b$, $g(b) = c$ and $g(c) = a$. Then f and g are both $g\delta s$-homeomorphisms but the composition $(g \circ f)$ is not a $g\delta s$-homeomorphism, because for an open set $\{a\}$ in Z, $(g \circ f)^{-1}(\{a\}) = f^{-1}(g^{-1}(\{a\})) = f^{-1}(\{c\}) = \{c\}$ is not a $g\delta s$-open in X.

Theorem 6.2.10. If $f : X \to Y$ and $g : Y \to Z$ be two $g\delta s$-homeomorphism functions and Y is $Tg\delta s$-space, then $(g \circ f)$ is $g\delta s$-homeomorphism.

Proof: Suppose U be an open set in Z, then $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$ where $g^{-1}(U) = V$. Since g is $g\delta s$-continuous implies V is $g\delta s$-open in Y and since Y is $Tg\delta s$-space, implies V is open in Y. Again, f is $g\delta s$-continuous implies $f^{-1}(V)$ is $g\delta s$-open in X. Thus $(g \circ f)$ is $g\delta s$-continuous.

Also, for an open set G in X, $(g \circ f)(G) = g(f(G)) = g(W)$ where $W = f(G)$, since f is $g\delta s$-open, implies W is $g\delta s$-open in Y and Y is $Tg\delta s$-space, implies W is open in Y. Therefore $g(W) = g(f(G)) = (g \circ f)(G)$ is $g\delta s$-open in Z, as g is $g\delta s$-open. Therefore, $(g \circ f)$ is $g\delta s$-open. Hence $(g \circ f)$ is bijective, $g\delta s$-continuous and $g\delta s$-open, implies $(g \circ f)$ is $g\delta s$-homeomorphism.

Definition 6.2.11. A bijective function $f : X \to Y$ is called strongly $g\delta s$-homeomorphism if f is both $g\delta s$-irresolute and strongly $g\delta s$-open.
Equivalently, if both f and f^{-1} are $g\delta s$-irresolute. The family of all strongly $g\delta s$-homeomorphism of space X on to itself is denoted by $Sg\delta s-h(X)$

Example 6.2.12. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ be topologies on X and Y respectively. Define a function $f : X \to Y$ by $f(a) = b$, $f(b) = a$ and $f(c) = c$, then f is both $g\delta s$-irresolute and strongly $g\delta s$-open. Therefore f is strongly $g\delta s$-homeomorphism.

Remark 6.2.13. Every strongly $g\delta s$-homeomorphism is $g\delta s$-homeomorphism. But converse need not be true in general.

Example 6.2.14. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ be topologies on X and Y respectively. Define a function $f : X \to Y$ by $f(a) = a$, $f(b) = b$ and $f(c) = c$, then f is $g\delta s$-homeomorphism. But not strongly $g\delta s$-homeomorphism, because for the $g\delta s$-open set $\{c\}$ in Y, $f^{-1}(\{c\}) = \{c\}$ is not $g\delta s$-open in X, implies f is not $g\delta s$-irresolute.

Remark 6.2.15. Implication diagram of the above results is given as follows

![Implication Diagram](image)

Theorem 6.2.16. If $f : X \to Y$ and $g : Y \to Z$ be two strongly $g\delta s$-homeomorphism functions, then $(g \circ f) : X \to Z$ is also strongly $g\delta s$-homeomorphism.

Proof: Suppose U is a $g\delta s$-open set in Z, then $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(V)$ where $g^{-1}(U) = V$. Since g is $g\delta s$-irresolute, implies V is $g\delta s$-open in Y and again f is $g\delta s$-irresolute, implies $f^{-1}(V)$ is $g\delta s$-open in X. Therefore, $(g \circ f)$ is $g\delta s$-irresolute. Also, for a $g\delta s$-open set G in X, $(g \circ f)(G) =$
\(g(f(G)) = g(W) \) where \(W = f(G) \), since \(f \) is strongly \(g\delta s \)-open, implies \(W = f(G) \) is \(\delta s \)-open in \(Y \) and again \(g \) is strongly \(g\delta s \)-open, implies, \(g(W) = g(f(G)) \) is \(g\delta s \)-open in \(Z \). This implies \((g \circ f)\) is strongly \(g\delta s \)-open. Therefore, \((g \circ f)\) is strongly \(g\delta s \)-homeomorphism.

Theorem 6.2.17. If \(f : X \rightarrow Y \) is strongly \(g\delta s \)-homeomorphism, then \(g\delta s \text{-Cl}(f^{-1}(A)) = f^{-1}(g\delta s \text{-Cl}(A)) \), for every subset \(A \) of \(Y \).

Proof: Suppose \(f : X \rightarrow Y \) is a strongly \(g\delta s \)-homeomorphism, then \(f \) is both \(g\delta s \)- irresolute and strongly \(g\delta s \)-open. Since \(g\delta s \text{-Cl}(A) \) is a \(g\delta s \)-closed set in \(Y \), implies \(f^{-1}(g\delta s \text{-Cl}(A)) \) is \(g\delta s \)-closed in \(X \). Since \(f^{-1}(A) \subseteq f^{-1}(g\delta s \text{-Cl}(A)) \), implies \(g\delta s \text{-Cl}(f^{-1}(A)) \subseteq g\delta s \text{-Cl}(f^{-1}(g\delta s \text{-Cl}(A))) = f^{-1}(g\delta s \text{-Cl}(A)) \). This implies \(g\delta s \text{-Cl}(f^{-1}(A)) \subseteq f^{-1}(g\delta s \text{-Cl}(A)) \). ...(i)

Again, since \(g\delta s \text{-Cl}(f^{-1}(A)) \) is a \(g\delta s \)-closed set in \(X \) and \(f \) is strongly \(g\delta s \)-open, implies \(f(g\delta s \text{-Cl}(f^{-1}(A))) \) is \(g\delta s \)-closed in \(Y \). Since \(f^{-1}(A) \subseteq g\delta s \text{-Cl}(f^{-1}(A)) \), implies \(A \subseteq f(g\delta s \text{-Cl}(f^{-1}(A))) \), therefore \(g\delta s \text{-Cl}(A) \subseteq f(g\delta s \text{-Cl}(f^{-1}(A))) \). This implies \(f^{-1}(g\delta s \text{-Cl}(A)) \subseteq g\delta s \text{-Cl}(f^{-1}(A)) \). ...(ii) Thus, from (i) and (ii), \(g\delta s \text{-Cl}(f^{-1}(A)) = f^{-1}(g\delta s \text{-Cl}(A)) \), for every subset \(A \) of \(Y \).

Corollary 6.2.18. If \(f : X \rightarrow Y \) is strongly \(g\delta s \)-homeomorphism then \(g\delta s \text{-Cl}(f(A)) = f(g\delta s \text{-Cl}(A)) \), for every subset \(A \) of \(X \).

Proof: Since \(f : X \rightarrow Y \) is a strongly \(g\delta s \)-homeomorphism, \(f^{-1} : Y \rightarrow X \) is also strongly \(g\delta s \)-homeomorphism. By theorem 6.2.17, \(g\delta s \text{-Cl}((f^{-1})^{-1}(A)) = (f^{-1})^{-1}(g\delta s \text{-Cl}(A)) \), for every subset \(A \) of \(X \). Hence \(g\delta s \text{-Cl}(f(A)) = f(g\delta s \text{-Cl}(A)) \), for every subset \(A \) of \(X \).

Corollary 6.2.19. If \(f : X \rightarrow Y \) is strongly \(g\delta s \)-homeomorphism then \(f(g\delta s \text{-Int}(A)) = g\delta s \text{-Int}(f(A)) \), for every subset \(A \) of \(X \).

Proof: For any subset \(A \) of \(X \), \(g\delta s \text{-Int}(A) = X - g\delta s \text{-Cl}(X - A) \), using theorem 2.5.16. Therefore, \(f(g\delta s \text{-Int}(A)) = f(X - g\delta s \text{-Cl}(X - A)) = \)
\[Y - f(g_{\delta s}-\text{Cl}(X - A)) = Y - g_{\delta s}-\text{Cl}(f(X - A)), \] using corollary 6.2.18.
\[= Y - g_{\delta s}-\text{Cl}(Y - f(A)) = g_{\delta s}-\text{Int}(f(A)), \] again using theorem 2.5.16.

Corollary 6.2.20. If \(f : X \to Y \) is strongly \(g_{\delta s}\)-homeomorphism, then \(f^{-1}(g_{\delta s}-\text{Int}(A)) = g_{\delta s}-\text{Int}(f^{-1}(A)), \) for every subset \(A \) of \(Y \).

Proof: If \(f : X \to Y \) is a strongly \(g_{\delta s}\)-homeomorphism, then \(f^{-1} : Y \to X \) is also strongly \(g_{\delta s}\)-homeomorphism. Therefore proof follows from 6.2.19.

6.3 \(g_{\delta s}\)-quotient Functions

Definition 6.3.1. A surjective function \(f : X \to Y \) is said to be \(g_{\delta s}\)-quotient if \(f \) is \(g_{\delta s}\)-continuous and \(f^{-1}(V) \) is open in \(X \) implies \(V \) is \(g_{\delta s}\)-open in \(Y \).

Theorem 6.3.2. If a function \(f : X \to Y \) is surjective, \(g_{\delta s}\)-continuous and \(g_{\delta s}\)-open, then \(f \) is \(g_{\delta s}\)-quotient function.

Proof: Since \(f : X \to Y \) is \(g_{\delta s}\)-continuous, it is enough to prove \(f^{-1}(V) \) is open in \(X \) implies \(V \) is \(g_{\delta s}\)-open in \(Y \). Let \(f^{-1}(V) \) is an open set in \(X \). Since \(f \) is \(g_{\delta s}\)-open, surjective implies \(f(f^{-1}(V)) = V \) is a \(g_{\delta s}\)-open in \(Y \). Therefore \(f \) is \(g_{\delta s}\)-quotient function.

Remark 6.3.3. Every homeomorphism is \(g_{\delta s}\)-quotient function. But converse need not be true in general.

Example 6.3.4. Let \(X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, c\}\} \) and \(\sigma = \{Y, \phi, \{a, b\}\} \) be topologies on \(X \) and \(Y \) respectively. Define a function \(f : X \to Y \) by \(f(a) = a, f(b) = c \) and \(f(c) = b \). Then \(f \) is \(g_{\delta s}\)-continuous and \(f^{-1}(V) \) is open in \(X \) implies \(V \) is \(g_{\delta s}\)-open in \(Y \), therefore \(f \) is \(g_{\delta s}\)-quotient. But for an open set \(\{a\} \) in \(X \), \(f(\{a\}) = \{a\} \) is not an open set in \(Y \), implies \(f \) is not an open function. Therefore \(f \) is not homeomorphism.
Theorem 6.3.5. If \(f : X \rightarrow Y \) is an open surjective, \(g\delta s \)-irresolute and \(g : Y \rightarrow Z \) is a \(g\delta s \)-quotient function, then \((g \circ f) : X \rightarrow Z\) is \(g\delta s \)-quotient function.

Proof: Let \(U \) be an open set in \(Z \). Since \(g \) is a \(g\delta s \)-quotient, implies \(g^{-1}(U) \) is a \(g\delta s \)-open in \(Y \). Also, since \(f \) is \(g\delta s \)-irresolute, \(f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U) \) is \(g\delta s \)-open in \(X \). Therefore \((g \circ f)\) is \(g\delta s \)-continuous. Assume \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is open in \(X \) for some subset \(U \) in \(Z \). Since \(f \) is an open and surjective, implies \(f(f^{-1}(g^{-1}(U))) = g^{-1}(U) \) is open in \(Y \) and since \(g \) is a \(g\delta s \)-quotient function, implies \(U \) is a \(g\delta s \)-open set in \(Y \). This shows that, \((g \circ f)\) is \(g\delta s \)-quotient function.

Definition 6.3.6. A surjective function \(f : X \rightarrow Y \) is said to be strongly \(g\delta s \)-quotient if \(f \) is \(g\delta s \)-continuous and \(f^{-1}(V) \) is \(g\delta s \)-open in \(X \) implies \(V \) is \(g\delta s \)-open in \(Y \).

Remark 6.3.7. Every strongly \(g\delta s \)-quotient function is \(g\delta s \)-quotient. But converse need not be true in general.

Example 6.3.8. Let \(X = Y = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}\} \) and \(\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\} \) be topologies on \(X \) and \(Y \) respectively. Define a function \(f : X \rightarrow Y \) by \(f(a) = b, f(b) = a \) and \(f(c) = c \). Then \(f \) is \(g\delta s \)-quotient but not strongly \(g\delta s \)-quotient. Because for set \(\{c\} \) in \(Y \), \(f^{-1}(\{c\}) \) is \(g\delta s \)-open in \(X \) and \(\{c\} \) is not \(g\delta s \)-open in \(Y \).

Definition 6.3.9. A surjective function \(f : X \rightarrow Y \) is said to be completely \(g\delta s \)-quotient if \(f \) is \(g\delta s \)-irresolute and \(f^{-1}(V) \) is \(g\delta s \)-open set in \(X \) implies \(V \) is an open set in \(Y \).

Theorem 6.3.10. If \(f : X \rightarrow Y \) is surjective, strongly \(g\delta s \)-open and \(g\delta s \)-irresolute and \(g : Y \rightarrow Z \) is a completely \(g\delta s \)-quotient, then \((g \circ f) : X \rightarrow Z\) is completely \(g\delta s \)-quotient.
Proof: Since by hypothesis both f and g are $g\delta$s-irresolute, implies $(g \circ f)$ is a $g\delta$s-irresolute as composition of two $g\delta$s-irresolute functions is again a $g\delta$s-irresolute. Suppose that $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is $g\delta$s-open in X for some subset U in Z. Since f is surjective and strongly $g\delta$s-open, implies $f(f^{-1}(g^{-1}(U))) = g^{-1}(U)$ is $g\delta$s-open in Y. Also since g is completely $g\delta$s-quotient, implies that U is open in Z. This proves, $(g \circ f) : X \rightarrow Z$ is completely $g\delta$s-quotient function.

Remark 6.3.11. Every completely $g\delta$s-quotient function is a strongly $g\delta$s-quotient function. But converse need not be true in general.

Example 6.3.12. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ be topologies on X and Y respectively. Define a function $f : X \rightarrow Y$ by $f(a) = f(c) = b, f(b) = a$. Then f is strongly $g\delta$s-quotient but not completely $g\delta$s-quotient. Since for set $\{b\}$ in Y, $f^{-1}(\{b\})$ is $g\delta$s-open in X, but $\{b\}$ is not open in Y.

Theorem 6.3.13. Let X, Y both are $Tg\delta$s-spaces and $f : X \rightarrow Y$ be surjective function. Then following are equivalent

(i) f is a completely $g\delta$s-quotient function.

(ii) f is a strongly $g\delta$s-quotient function.

(iii) f is a $g\delta$s-quotient function.

Proof: (i)\Rightarrow(ii) Suppose (i) holds. Clearly f is $g\delta$s-continuous, because every $g\delta$s-irresolute function is $g\delta$s-continuous. Let $f^{-1}(V)$ is $g\delta$s-open, by (i) V is open set. Since every open set is $g\delta$s-open, implies V is $g\delta$s-open.

Therefore (ii) holds.

(ii)\Rightarrow(iii) Suppose (ii) holds. Therefore f is $g\delta$s-continuous. Let $f^{-1}(V)$ is open, and hence it is $f^{-1}(V)$ is $g\delta$s-open. By (ii) V is $g\delta$s-open set. Therefore (iii) holds.

(iii)\Rightarrow (i) Suppose (iii) holds. Let V be a $g\delta$s-open set in Y and Y is $Tg\delta$s-space, implies V is an open set in Y. Since f is $g\delta$s-continuous, implies
\(f^{-1}(V)\) is \(g\delta s\)-open in \(X\). This implies \(f\) is \(g\delta s\)-irresolute. Suppose \(f^{-1}(V)\) is \(g\delta s\)-open in \(X\). Since \(X\) is \(Tg\delta s\)-space, \(f^{-1}(V)\) is open in \(X\). By (iii) \(V\) is \(g\delta s\)-open in \(Y\). Since \(Y\) is a \(Tg\delta s\)-space, \(V\) is open in \(Y\). Hence (i) hold.

6.4 \(g\delta s\)-compactness

Definition 6.4.1. A collection \(\{A_i : i \in I\}\) of \(g\delta s\)-open sets in a topological space \(X\) is called \(g\delta s\)-open cover of a subset \(A\) in \(X\) if \(A \subseteq \bigcup_{i \in I} A_i\).

Definition 6.4.2. A topological space \(X\) is called \(g\delta s\)-compact if every \(g\delta s\)-open cover of \(X\) has a finite subcover.

Definition 6.4.3. A subset \(A\) of a space \(X\) is called \(g\delta s\)-compact relative to \(X\) if for every collection \(\{A_i : i \in I\}\) of \(g\delta s\)-open subsets of \(X\) such that \(A \subseteq \bigcup_{i \in I} A_i\) there exists a finite subset \(I_0\) of \(I\) such that \(A \subseteq \bigcup_{i \in I_0} A_i\).

Definition 6.4.4. A subset \(A\) of a topological space \(X\) is called \(g\delta s\)-compact if \(A\) is \(g\delta s\)-compact as a subspace of \(X\).

Theorem 6.4.5. A \(g\delta s\)-closed subset of \(g\delta s\)-compact space is \(g\delta s\)-compact relative to \(X\).

Proof: Let \(X\) be a \(g\delta s\)-compact space and \(A\) is a \(g\delta s\)-closed subset of \(X\). Then \(X - A\) is \(g\delta s\)-open in \(X\). Let \(S = \{A_i : i \in I\}\) be a \(g\delta s\)-open cover of \(A\) by \(g\delta s\)-open subsets in \(X\). Then \(S^* = S \cup (X - A)\) is a \(g\delta s\)-open cover of \(X\). That is \(X = (\bigcup \{A_i : i \in I\}) \cup (X - A)\). By hypothesis \(X\) is \(g\delta s\)-compact and hence \(S^*\) is reducible to a finite subcover of \(X\) say \(X = A_{i_1} \cup A_{i_2} \cup \ldots \cup A_{i_n} \cup (X - A), A_{i_k} \in S^*\). But \(A\) and \(X - A\) are disjoint. Hence \(A \subseteq A_{i_1} \cup A_{i_2} \cup \ldots \cup A_{i_n}\). Thus a \(g\delta s\)-open cover \(S\) of \(A\) contains a finite subcover. Therefore \(A\) is \(g\delta s\)-compact relative to \(X\).

Theorem 6.4.6. If \(f : X \to Y\) is surjective, \(g\delta s\)-continuous (resp. semi-\(g\delta s\)-continuous) function and \(X\) is \(g\delta s\)-compact, then \(Y\) is compact (resp. semi compact).
Proof: Let $f: X \to Y$ be surjective, $g\delta s$-continuous (resp. semi-$g\delta s$-continuous) function from $g\delta s$-compact space X to space Y. Let $\{A_i : i \in I\}$ be an open (resp. semiopen) cover of Y. Since f is $g\delta s$-continuous (resp. semi-$g\delta s$-continuous), implies $\{f^{-1}(A_i) : i \in I\}$ is $g\delta s$-open cover of X. Since X is $g\delta s$-compact, implies $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ has a finite subcover say $\{f^{-1}(A_i) : i = 1...n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$, which implies $f(X) = \bigcup_{i=1}^{n} A_i$. That is, $Y = \bigcup_{i=1}^{n} A_i$ as f is surjective. Thus $\{A_1, A_2, ... A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is compact (resp. semi compact).

Theorem 6.4.7. If $f: X \to Y$ is $g\delta s$-irresolute and $B \subset X$ is $g\delta s$-compact relative to X, then the image $f(B)$ is $g\delta s$-compact relative to Y.

Proof: Let $\{A_i : i \in I\}$ be any collection of $g\delta s$-open sets in Y such that $f(B) \subset \bigcup_{i \in I} A_i$. Then $B \subset \bigcup_{i \in I} f^{-1}(A_i)$, where $\{f^{-1}(A_i) : i \in I\}$ is family of $g\delta s$-open sets in X. Since B is $g\delta s$-compact relative to X, the open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1, 2...n\}$ such that $B \subset \bigcup_{i=1}^{n} f^{-1}(A_i)$. Therefore $f(B) \subset \bigcup_{i=1}^{n} A_i$. Hence $f(B)$ is $g\delta s$-compact relative to Y.

Remark 6.4.8. Every strongly $g\delta s$-homeomorphic image of a $g\delta s$-compact space is $g\delta s$-compact because if f is a strongly $g\delta s$-homeomorphism then it is certainly $g\delta s$-irresolute.

Theorem 6.4.9. If $f: X \to Y$ is strongly $g\delta s$-continuous function from a compact space X onto a topological space Y, then Y is $g\delta s$-compact.

Proof: Let $\{A_i : i \in I\}$ be a $g\delta s$-open cover of Y. Since f is strongly $g\delta s$-continuous, $\{f^{-1}(A_i) : i \in I\}$ is an open cover of X. Again, since X is compact space, the open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1...n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$ which implies $f(X) = \bigcup_{i=1}^{n} A_i$ so that $Y = \bigcup_{i=1}^{n} A_i$. That is $\{A_1, A_2...A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is $g\delta s$-compact.
Theorem 6.4.10. Let $f : X \to Y$ be a semi-$g\delta s$-continuous function from a $g\delta s$-compact space X onto a topological space Y. If Y is $g\delta sT_{1/2}$ space, then Y is $g\delta s$-compact.

Proof: Let $\{A_i : i \in I\}$ be a $g\delta s$-open cover of Y. As Y is $g\delta sT_{1/2}$ space, $\{A_i : i \in I\}$ is a semiopen cover of Y. Since f is semi-$g\delta s$-continuous, $\{f^{-1}(A_i) : i \in I\}$ is a $g\delta s$-open cover of X and X is $g\delta s$-compact, implies that the $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1 \ldots n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$ which implies $f(X) = Y = \bigcup_{i=1}^{n} A_i$, that is $\{A_i : i = 1 \ldots n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is $g\delta s$-compact.

Corollary 6.4.11. Let $f : X \to Y$ be a $g\delta s$-continuous function from a $g\delta s$-compact space X onto a space Y. If Y is $Tg\delta s$-space, then Y is $g\delta s$-compact.

Proof: Since every semi-$g\delta s$-continuous function is $g\delta s$-continuous and proof follows from theorem 6.4.10.

Theorem 6.4.12. Let $f : X \to Y$ be a perfectly $g\delta s$-continuous surjection. If X is mildly compact, then Y is $g\delta s$-compact.

Proof: Let $f : X \to Y$ be a perfectly $g\delta s$-continuous function and let $\{A_i : i \in I\}$ be a $g\delta s$-open cover of Y. Since f is perfectly $g\delta s$-continuous, $\{f^{-1}(A_i) : i \in I\}$ is clopen cover of X. Again since X is mildly compact space, the clopen cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1 \ldots n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$ which implies $f(X) = Y = \bigcup_{i=1}^{n} A_i$. That is $\{A_1, A_2 \ldots A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is $g\delta s$-compact.

Theorem 6.4.13. Let $f : X \to Y$ be a completely $g\delta s$-continuous surjection. If X is nearly compact, then Y is $g\delta s$-compact.
Proof: Let \(f : X \to Y \) be a completely \(g\delta s \)-continuous function and let \(\{A_i : i \in I\} \) be a \(g\delta s \)-open cover of \(Y \). Since \(f \) is completely \(g\delta s \)-continuous, \(\{f^{-1}(A_i) : i \in I\} \) is regular open cover of \(X \). Again since \(X \) is nearly compact space, the regular open cover \(\{f^{-1}(A_i) : i \in I\} \) of \(X \) has a finite subcover say \(\{f^{-1}(A_i) : i = 1...n\} \). Therefore \(X = \bigcup_{i=1}^{n} f^{-1}(A_i) \) which implies \(f(X) = Y = \bigcup_{i=1}^{n} A_i \). That is \(\{A_1, A_2,...A_n\} \) is a finite subcover of \(\{A_i : i \in I\} \) for \(Y \). Hence \(Y \) is \(g\delta s \)-compact.

Theorem 6.4.14. Every \(g\delta s \)-compact space is compact.

Proof: Let \(X \) be a \(g\delta s \)-compact space and \(\{A_i : i \in I\} \) be an open cover of \(X \). Then \(\{A_i : i \in I\} \) is a \(g\delta s \)-open cover of \(X \) as every open set is \(g\delta s \)-open set. Since \(X \) is \(g\delta s \)-compact, the \(g\delta s \)-open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover say \(\{A_i : i = 1...n\} \) for \(X \). This shows that every open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover. Therefore \(X \) is compact.

Theorem 6.4.15. If \(X \) is compact and \(Tg\delta s \)-space, then \(X \) is \(g\delta s \)-compact.

Proof: Let \(\{A_i : i \in I\} \) be a \(g\delta s \)-open cover of \(X \). As \(X \) is \(Tg\delta s \)-space, \(\{A_i : i \in I\} \) is an open cover of \(X \). Since \(X \) is compact, the open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover say \(\{A_i : i = 1,...,n\} \). This shows that every \(g\delta s \)-open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover. Therefore \(X \) is \(g\delta s \)-compact.

Theorem 6.4.16. If \(X \) is semi compact space and \(g\delta s T_{1/2} \) space, then \(X \) is \(g\delta s \)-compact.

Proof: Let \(X \) be a semi compact space and \(\{A_i : i \in I\} \) be a \(g\delta s \)-open cover of \(X \). As \(X \) is \(g\delta s T_{1/2} \) space \(\{A_i : i \in I\} \) is a semiopen cover of \(X \). Since \(X \) is semi compact, the semiopen cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover say \(\{A_i : i \in I\} \) of \(X \). This shows that every \(g\delta s \)-open cover \(\{A_i : i \in I\} \) of \(X \) has a finite subcover. Therefore \(X \) is \(g\delta s \)-compact.
Theorem 6.4.17. A topological space X is $g\delta s$-compact if and only if every family of $g\delta s$-closed sets of X having finite intersection property has a nonempty intersection.

Proof: Suppose X is $g\delta s$-compact. Let $\{A_i : i \in I\}$ be a family of $g\delta s$-closed sets with finite intersection property. To prove, $\cap_{i \in I} A_i \neq \emptyset$. Suppose $\cap_{i \in I} A_i = \emptyset$. Then, $X - \cap_{i \in I} A_i = X$. This implies, $\cup_{i \in I} (X - A_i) = X$. Thus the cover $\{X - A_i : i \in I\}$ is a $g\delta s$-open cover of X. Since X is $g\delta s$-compact, the $g\delta s$-open cover $\{X - A_i : i \in I\}$ has a finite subcover say $\{X - A_i : i = 1 \ldots n\}$. This implies $X = \cup_{i=1}^n (X - A_i)$ which implies that $X = X - \cap_{i=1}^n A_i$ which implies $X - X = X - (X - \cap_{i=1}^n A_i)$ implies that $\cap_{i=1}^n A_i = \emptyset$. This contradicts the hypothesis. Therefore, $\cap_{i \in I} A_i \neq \emptyset$.

Conversely, suppose every family of $g\delta s$-closed sets of X with finite intersection property has a nonempty intersection and if possible, let X be not compact, then there exists a $g\delta s$-open cover of X say $\{G_i : i \in I\}$ having no finite subcover. This implies for any finite sub family $\{G_i : i = 1 \ldots n\}$ of $\{G_i : i \in I\}$, $\cup_{i=1}^n G_i \neq X$ which implies that $X - \cup_{i=1}^n G_i \neq X - X$, this implies $\cap_{i=1}^n (X - G_i) \neq \emptyset$. Then the family $\{X - G_i : i \in I\}$ of $g\delta s$-closed sets has a finite intersection property. Therefore $\cap_{i \in I} (X - G_i) \neq \emptyset$, which implies, $\cap_{i \in I} (X - G_i)$ is an infinite collection of $g\delta s$-closed sets with f.i.p. Also, by hypothesis $\{G_i : i \in I\}$ being a $g\delta s$-open covering of X. Therefore $X = \cup_{i \in I} G_i$. Taking complements, $\emptyset = X - \cup_{i \in I} G_i = \cap_{i \in I} (X - G_i)$, which is an infinite collection of $g\delta s$-closed subsets of X having f.i.p with empty intersection. This is a contradiction due to the fact that X is not compact. Hence X is $g\delta s$-compact.

Definition 6.4.18. A topological space X is said to be countably $g\delta s$-compact if every countable $g\delta s$-open cover of X has a finite subcover.

Definition 6.4.19. A subset A of a space X is called countably $g\delta s$-compact relative to X if for every countable collection $\{A_i : i \in I\}$ of $g\delta s$-open
subsets of X such that $A \subseteq \cup_{i \in I} A_i$ there exists a finite subset I_0 of I such that $A \subseteq \cup_{i \in I_0} A_i$

Theorem 6.4.20. A $g\delta$s-closed subset of countably $g\delta$s-compact space is countably $g\delta$s-compact relative to X.

Proof: Similar to proof of theorem 6.4.5.

Theorem 6.4.21. If X is a countably $g\delta$s-compact space, then f is countably compact.

Proof: Let $\{A_i : i \in I\}$ be a countable open cover of X. Then $\{A_i : i \in I\}$ is countable $g\delta$s-open cover of X. Since X is countably $g\delta$s-compact, the countable $g\delta$s-open cover of X has a finite subcover say $\{A_i : i = 1...n\}$. Hence X is countably compact.

Theorem 6.4.22. If X is countably compact and $Tg\delta$s-space, then X is countably $g\delta$s-compact.

Proof: Let $\{A_i : i \in I\}$ be a countable $g\delta$s-open cover of X by $g\delta$s-open sets. As X is $Tg\delta$s-space, $\{A_i : i \in I\}$ is countable open cover of X. Since X is countably compact, the open cover $\{A_i : i \in I\}$ of X has a finite subcover $\{A_i : i = 1...n\}$. Hence X is countably $g\delta$s-compact.

Theorem 6.4.23. If X is semi countably compact and $g\delta sT_{1/2}$ space, then X is countably $g\delta$s-compact.

Proof: Let $\{A_i : i \in I\}$ be a countable $g\delta$s-open cover of X by $g\delta$s-open sets. As X is $g\delta sT_{1/2}$ space, $\{A_i : i \in I\}$ is countable semiopen cover of X. Since X is semi countably compact, the semiopen cover $\{A_i : i \in I\}$ of X has a finite subcover $\{A_i : i = 1...n\}$. Hence X is countably $g\delta$s-compact.
Theorem 6.4.24. Every $g\delta s$-compact space is countably $g\delta s$-compact.

Proof: Let X be a $g\delta s$-compact space. Let $\{A_i : i \in I\}$ be a countable $g\delta s$-open cover of X containing $g\delta s$-open sets. Then $\{A_i : i \in I\}$ is a $g\delta s$-open cover of X, which has a finite subcover $\{A_i : i = 1\ldots n\}$. Hence X is countably $g\delta s$-compact.

Theorem 6.4.25. If $f : X \to Y$ is $g\delta s$-continuous (resp. semi-$g\delta s$-continuous) function from a countably $g\delta s$-compact space X onto a topological space Y, then Y is countably compact (resp. semi countably compact).

Proof: Let $\{A_i : i \in I\}$ be a countable open (resp. countable semiopen) cover of Y. Since f is $g\delta s$-continuous (resp. semi-$g\delta s$-continuous), then $\{f^{-1}(A_i) : i \in I\}$ is countable $g\delta s$-open cover of X. Again since X is countably $g\delta s$-compact, the countable $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1\ldots n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$ which implies $f(X) = Y = \bigcup_{i=1}^{n} A_i$. That is $\{A_1, A_2\ldots A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is countably compact (resp. semi countably compact).

Theorem 6.4.26. Let $f : X \to Y$ be $g\delta s$-continuous function from a countably $g\delta s$-compact space X onto a topological space Y. If Y is $Tg\delta s$-space, then Y is countably $g\delta s$-compact.

Proof: Let $\{A_i : i \in I\}$ be a countable $g\delta s$-open cover of Y by $g\delta s$-open sets in Y. Since Y is $Tg\delta s$-space, $\{A_i : i \in I\}$ is a countable open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a countable $g\delta s$-open cover of X as f is $g\delta s$-continuous. Again since X is countably $g\delta s$-compact, the countable $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a finite subcover say $\{f^{-1}(A_i) : i = 1,\ldots n\}$. Therefore $X = \bigcup_{i=1}^{n} f^{-1}(A_i)$ which implies $f(X) = Y = \bigcup_{i=1}^{n} A_i$. That is $\{A_1, A_2\ldots A_n\}$ is a finite subcover of $\{A_i : i \in I\}$ for Y. Hence Y is countably $g\delta s$-compact.
Theorem 6.4.27. Let \(f : X \rightarrow Y \) be semi-\(g\delta s \)-continuous function from a countably \(g\delta s \)-compact space \(X \) onto a topological space \(Y \). If \(Y \) is \(g\delta s T_{1/2} \) space, then \(Y \) is countably \(g\delta s \)-compact.

Proof: Let \(\{ A_i : i \in I \} \) be a countable \(g\delta s \)-open cover of \(Y \) by \(g\delta s \)-open sets in \(Y \). Since \(Y \) is \(g\delta s T_{1/2} \) space, \(\{ A_i : i \in I \} \) is a countable semiopen cover of \(Y \). Then \(\{ f^{-1}(A_i) : i \in I \} \) is a countable \(g\delta s \)-open cover of \(X \) as \(f \) is semi-\(g\delta s \)-continuous. Again since \(X \) is countably \(g\delta s \)-compact, the countable \(g\delta s \)-open cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a finite subcover say \(\{ f^{-1}(A_i) : i = 1,...,n \} \). Therefore \(X = \bigcup_{i=1}^{n} f^{-1}(A_i) \) which implies \(f(X) = Y = \bigcup_{i=1}^{n} A_i \). That is \(\{ A_1, A_2...A_n \} \) is a finite subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is countably \(g\delta s \)-compact.

Theorem 6.4.28. Let \(f : X \rightarrow Y \) be strongly \(g\delta s \)-continuous function from a countably compact space \(X \) onto a space \(Y \), then \(Y \) is countably \(g\delta s \)-compact.

Proof: Let \(\{ A_i : i \in I \} \) be a countable \(g\delta s \)-open cover of \(Y \) by \(g\delta s \)-open sets in \(Y \). Then \(\{ f^{-1}(A_i) : i \in I \} \) is a countable open cover of \(X \) as \(f \) is strongly \(g\delta s \)-continuous function. Since \(X \) is countably compact, the countable open cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a finite subcover say \(\{ f^{-1}(A_i) : i = 1,...,n \} \). Therefore \(X = \bigcup_{i=1}^{n} f^{-1}(A_i) \) which implies \(f(X) = Y = \bigcup_{i=1}^{n} A_i \). That is \(\{ A_1, A_2...A_n \} \) is a finite subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is countably \(g\delta s \)-compact.

Theorem 6.4.29. The image of a countably \(g\delta s \)-compact space under \(g\delta s \)-irresolute function is countably \(g\delta s \)-compact.

Proof: Let \(f : X \rightarrow Y \) be a \(g\delta s \)-irresolute function from a countably \(g\delta s \)-compact space \(X \) onto a topological space \(Y \). Let \(\{ A_i : i \in I \} \) be a countable \(g\delta s \)-open cover of \(Y \). Then \(\{ f^{-1}(A_i) : i \in I \} \) is a countable \(g\delta s \)-open cover of \(X \) as \(f \) is \(g\delta s \)-irresolute. Since \(X \) is countably \(g\delta s \)-compact, the countable
gδs-open cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a finite subcover say \(\{ f^{-1}(A_i) : i = 1...n \} \). Therefore \(X = \bigcup_{i=1}^{n} f^{-1}(A_i) \) which implies \(f(X) = Y = \bigcup_{i=1}^{n} A_i \). That is \(\{ A_1, A_2...A_n \} \) is a finite subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is countably gδs-compact.

Theorem 6.4.30. A space \(X \) is countably gδs-compact if and only if every countable family of gδs-closed sets of \(X \) having finite intersection property (f. i. p.) has a non empty intersection.

Proof: Similar to the proof of theorem 6.4.17.

Definition 6.4.31. A topological space \(X \) is said to be gδs-Lindelöf if every gδs-open cover of \(X \) has a countable subcover.

Theorem 6.4.32. Every gδs-Lindelöf space is Lindelöf.

Proof: Let \(X \) be a gδs-Lindelöf space. Let \(\{ A_i : i \in I \} \) be an open cover of \(X \). Then \(\{ A_i : i \in I \} \) is gδs-open cover of \(X \) as every open set is gδs-open set in \(X \). Since \(X \) is gδs-Lindelöf space, the gδs-open cover \(\{ A_i : i \in I \} \) of \(X \) has countable subcover. Hence \(X \) is Lindelöf space.

Theorem 6.4.33. If \(X \) is Lindelöf and \(Tgδs \)-space, then \(X \) is gδs-Lindelöf space.

Proof: Let \(\{ A_i : i \in I \} \) be a gδs-open cover of \(X \). Since \(X \) is \(Tgδs \)-space implies \(\{ A_i : i \in I \} \) is an open cover of \(X \). Since \(X \) is Lindelöf space, the open cover \(\{ A_i : i \in I \} \) of \(X \) has a countable subcover. Hence \(X \) is gδs-Lindelöf space.

Theorem 6.4.34. Every gδs-compact space is gδs-Lindelöf space.

Proof: Let \(X \) be a gδs-compact space. Let \(\{ A_i : i \in I \} \) be gδs-open cover of \(X \). Then \(\{ A_i : i \in I \} \) has a finite subcover say \(\{ A_i : i = 1...n \} \) as \(X \) is gδs-compact. Since every finite subcover is always a countable subcover. Therefore \(\{ A_i : i = 1...n \} \) is a countable subcover of \(\{ A_i : i \in I \} \) for \(X \). Hence \(X \) is gδs-Lindelöf space.
Theorem 6.4.35. If $f : X \rightarrow Y$ is $g\delta s$-continuous function from a $g\delta s$-Lindelöf space X onto a space Y, then Y is Lindelöf.

Proof: Let $\{A_i : i \in I\}$ be an open cover of Y. Since f is $g\delta s$-continuous, $\{f^{-1}(A_i) : i \in I\}$ is $g\delta s$-open cover of X. Since X is $g\delta s$-Lindelöf, the $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ has a countable subcover say $\{f^{-1}(A_{i_n}) : n \in N\}$. Therefore $X = \bigcup_{n \in N} f^{-1}(A_{i_n})$ which implies $f(X) = Y = \bigcup_{n \in N} A_{i_n}$, that is $\{A_{i_n} : n \in N\}$ is a countable subcover of $\{A_i : i \in I\}$ for Y. Hence Y is Lindelöf space.

Theorem 6.4.36. The image of $g\delta s$-Lindelöf space under $g\delta s$-irresolute function is $g\delta s$-Lindelöf.

Proof: Let $f : X \rightarrow Y$ be a $g\delta s$-irresolute form a $g\delta s$-Lindelöf space X onto a space Y. Let $\{A_i : i \in I\}$ be a $g\delta s$-open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is $g\delta s$-open cover of X as f is $g\delta s$-irresolute. Since X is $g\delta s$-Lindelöf, the $g\delta s$-open cover $\{f^{-1}(A_i) : i \in I\}$ of X has a countable subcover say $\{f^{-1}(A_{i_n}) : n \in N\}$. Therefore $X = \bigcup_{n \in N} f^{-1}(A_{i_n})$ which implies $f(X) = Y = \bigcup_{n \in N} A_{i_n}$, that is $\{A_{i_n} : n \in N\}$ is a countable subfamily of $\{A_i : i \in I\}$ for Y. Hence Y is Lindelöf.

Theorem 6.4.37. If $f : X \rightarrow Y$ is strongly $g\delta s$-continuous function from a Lindelöf space X onto a space Y, then Y is $g\delta s$-Lindelöf.

Proof: Let $\{A_i : i \in I\}$ be a $g\delta s$-open cover of Y. Since f is strongly $g\delta s$-continuous, $\{f^{-1}(A_i) : i \in I\}$ is open cover of X. Again, since X is Lindelöf, the open cover $\{f^{-1}(A_{i_n}) : i \in I\}$ of X has a countable subcover say $\{f^{-1}(A_{i_n}) : i \in I\}$. Therefore $X = \bigcup_{n \in N} f^{-1}(A_{i_n})$ which implies $f(X) = Y = \bigcup_{n \in N} A_{i_n}$. So $\{A_{i_n} : n \in N\}$ is a countable subcover of $\{A_i : i \in I\}$ for Y. Hence Y is $g\delta s$-Lindelöf.

Theorem 6.4.38. Let $f : X \rightarrow Y$ be a $g\delta s$-continuous function from a $g\delta s$-Lindelöf space X onto a space Y and Y is $Tg\delta s$ space, then Y is $g\delta s$-Lindelöf.
Proof: Let \(\{ A_i : i \in I \} \) be a \(g\delta s \)-open cover of \(Y \). Then \(\{ A_i : i \in I \} \) is open cover of \(Y \) as \(Y \) is \(Tg\delta s \) space. Since \(f \) is \(g\delta s \)-continuous, \(\{ f^{-1}(A_i) : i \in I \} \) is \(g\delta s \)-open cover of \(X \). Again since \(X \) is \(g\delta s \)-Lindelöf, the \(g\delta s \)-open cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a countable subcover say \(\{ f^{-1}(A_{i_n}) : n \in N \} \). Therefore \(X = \bigcup_{n \in N} f^{-1}(A_{i_n}) \) which implies \(f(X) = Y = \bigcup_{n \in N} A_{i_n} \), that is \(\{ A_{i_n} : n \in N \} \) is a countable subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is \(g\delta s \)-Lindelöf.

Theorem 6.4.39. Let \(f : X \to Y \) be a perfectly \(g\delta s \)-continuous surjection and \(X \) is mildly Lindelöf, then \(Y \) is \(g\delta s \)-Lindelöf.

Proof: Let \(f : X \to Y \) be a perfectly \(g\delta s \)-continuous function and let \(\{ A_i : i \in I \} \) be a \(g\delta s \)-open cover of \(Y \). Since \(f \) is perfectly \(g\delta s \)-continuous, \(\{ f^{-1}(A_i) : i \in I \} \) is clopen cover of \(X \). Again since \(X \) is mildly Lindelöf space, the clopen cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a countable subcover say \(\{ f^{-1}(A_{i_n}) : n \in N \} \). Therefore \(X = \bigcup_{n \in N} f^{-1}(A_{i_n}) \) which implies \(f(X) = Y = \bigcup_{n \in N} A_{i_n} \), that is \(\{ A_{i_n} : n \in N \} \) is a countable subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is \(g\delta s \)-Lindelöf.

Theorem 6.4.40. Let \(f : X \to Y \) be a completely \(g\delta s \)-continuous surjection and \(X \) is nearly Lindelöf, then \(Y \) is \(g\delta s \)-Lindelöf.

Proof: Let \(f : X \to Y \) be a completely \(g\delta s \)-continuous function and let \(\{ A_i : i \in I \} \) be a \(g\delta s \)-open cover of \(Y \). Since \(f \) is completely \(g\delta s \)-continuous, \(\{ f^{-1}(A_i) : i \in I \} \) is regular open cover of \(X \). Again since \(X \) is nearly compact space, the regular open cover \(\{ f^{-1}(A_i) : i \in I \} \) of \(X \) has a countable subcover say \(\{ f^{-1}(A_{i_n}) : n \in N \} \). Therefore \(X = \bigcup_{n \in N} f^{-1}(A_{i_n}) \) which implies \(f(X) = Y = \bigcup_{n \in N} A_{i_n} \) is a countable subcover of \(\{ A_i : i \in I \} \) for \(Y \). Hence \(Y \) is \(g\delta s \)-Lindelöf.

Theorem 6.4.41. If \(X \) is \(g\delta s \)-Lindelöf and countably \(g\delta s \)-compact space, then \(X \) is \(g\delta s \)-compact.
Proof: Suppose X is countably $g\delta s$-compact and $g\delta s$-Lindelöf space. Let
\{A_i : i \in I\} be a $g\delta s$-open cover of X. Since X is $g\delta s$-Lindelöf,
\{A_i : i \in I\} has a countable subcover say \{A_{i_n} : n \in N\}. Therefore \{A_{i_n} : n \in N\} is a

countable subcover of X and \{A_{i_n} : n \in N\} is a subfamily of \{A_i : i \in I\}

and so \{A_{i_n} : n \in N\} is a countably $g\delta s$-open cover of X. Again since X

is countably $g\delta s$-compact, \{A_{i_n} : n \in N\} has a finite subcover say \{A_{i_n} :

n \in N\} \subset \{A_i : i \in I\}. Therefore \{A_{i_n} : n \in N\} is a finite subcover of

\{A_i : i \in I\} for X. Hence X is $g\delta s$-compact space.

6.5 $g\delta s$-connectedness

Definition 6.5.1. A topological space X is said to be $g\delta s$-connected if X
cannot be written as the disjoint union of two non empty $g\delta s$-open sets.

Remark 6.5.2. Every $g\delta s$-connected space is connected. But converse need

not be true in general.

Example 6.5.3. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$ be topology on

X. Then X is connected space, but not $g\delta s$-connected space, because $X =

\{b\} \cup \{a, c\}$ where $\{b\}$ and $\{a, c\}$ are $g\delta s$-open sets.

Theorem 6.5.4. For a topological space X, the following are equivalent

(i) X is $g\delta s$-connected.

(ii) The only subsets of X which are both $g\delta s$-open and $g\delta s$-closed are the

empty set ϕ and X.

(iii) Each $g\delta s$-continuous function of X into a discrete space Y with at least

two points is a constant function.

Proof: (i)\Rightarrow(ii) Suppose (i) holds and F is a proper subset of X, which

is both $g\delta s$-open and $g\delta s$-closed. Then $X - F$ is also both $g\delta s$-open and

$g\delta s$-closed. Therefore $X = F \cup (X - F)$ is a disjoint union of two non empty

$g\delta s$-open sets. This contradicts the fact that X is $g\delta s$-connected. Hence
\(F = \phi \) or \(X \).

(ii) \(\Rightarrow \) (i) Suppose (ii) holds. If possible \(X \) is not \(g\delta s \)-connected, then \(X = A \cup B \), where \(A \) and \(B \) are disjoint non empty \(g\delta s \)-open sets in \(X \). Since \(A = X - B \), implies \(A \) is \(g\delta s \)-closed set. But by assumption, \(A = \phi \) or \(X \), which is contradiction. Hence (i) hold.

(ii) \(\Rightarrow \) (iii) Let \(f : X \to Y \) be a \(g\delta s \)-continuous function, where \(Y \) is a discrete space with at least two points. Then \(f^{-1}(\{y\}) \) is both \(g\delta s \)-open and \(g\delta s \)-closed for each \(y \in Y \) and \(X = \cup \{ f^{-1}(\{y\}) : y \in Y \} \). By assumption, \(f^{-1}(\{y\}) = X \) or \(\phi \). If \(f^{-1}(\{y\}) = \phi \) for all \(y \in Y \), then \(f \) will not be function. Also there cannot exist more than one point \(y \in Y \) such that \(f^{-1}(\{y\}) = X \). Hence there exists only one \(y \in Y \) such that \(f^{-1}(\{y\}) = X \) and \(f^{-1}(\{y_1\}) = \phi \) where \(y \neq y_1 \in Y \). This shows that \(f \) is constant function.

(iii) \(\Rightarrow \) (ii) Let \(F \) be both \(g\delta s \)-open and \(g\delta s \)-closed in \(X \). Suppose \(F \neq \phi \) and \(f : X \to Y \) be a \(g\delta s \)-continuous function defined by \(f(F) = \{a\} \) and \(f(X - F) = \{b\} \) for some distinct points \(a \) and \(b \) in \(Y \). By assumption, \(f \) is constant function. Therefore \(F = X \).

Theorem 6.5.5. If \(f : X \to Y \) is a \(g\delta s \)-continuous (resp. semi-\(g\delta s \)-continuous) surjection and \(X \) is \(g\delta s \)-connected, then \(Y \) is connected (resp. semi connected).

Proof: Suppose \(Y \) is not connected (resp. semi connected). Then \(Y = A \cup B \) where \(A \) and \(B \) are disjoint nonempty open (resp. semiopen) sets in \(Y \). Since \(f \) is a \(g\delta s \)-continuous (resp. semi-\(g\delta s \)-continuous) surjection, \(X = f^{-1}(A) \cup f^{-1}(B) \) are disjoint non empty \(g\delta s \)-open subsets of \(X \), implies \(X \) is not \(g\delta s \)-connected space. This is contradiction to the hypothesis. Therefore \(Y \) is connected (resp. semi connected).

Theorem 6.5.6. If \(X \) is \(Tg\delta s \)-space and connected, then \(X \) is \(g\delta s \)-connected.

Proof: Suppose \(X \) is not \(g\delta s \)-connected. Then \(X = A \cup B \) where \(A \) and
B are disjoint nonempty gδs-open sets in X. Since X is Tgδs-space, implies A and B are disjoint non empty open sets in X, implies X is not connected space. This is contradiction to the hypothesis. Therefore X is gδs-connected.

Corollary 6.5.7. If X is gδsT_{1/2} space and semi connected, then X is gδs-connected.

Proof: Since every Tgδs-space is gδsT_{1/2} space and by theorem 6.5.6.

Theorem 6.5.8. If f : X → Y is a gδs-irresolute, surjection and X is gδs-connected, then Y is gδs-connected.

Proof: Suppose Y is not gδs-connected. Then Y = A ∪ B where A and B are disjoint nonempty gδs-open sets in Y. Since f is a gδs-irresolute, surjection, X = f^{-1}(A) ∪ f^{-1}(B) are disjoint non empty gδs-open subsets of X, implies X is not gδs-connected space. This is contradiction to the hypothesis. Therefore Y is gδs-connected.

Theorem 6.5.9. If f : X → Y is a strongly gδs-continuous surjection and X is connected, then Y is gδs-connected.

Proof: Suppose Y is not gδs-connected. Then Y = A ∪ B where A and B are disjoint nonempty gδs-open sets in Y. Since f is a strongly gδs-continuous surjection, X = f^{-1}(A) ∪ f^{-1}(B) are disjoint non empty open subsets of X, implies X is not connected space. This is contradiction to the hypothesis. Therefore Y is gδs-connected.

Theorem 6.5.10. If f : X → Y is a bijective quasi gδs-open function and Y is connected then X is gδs-connected.

Proof: Suppose X is not gδs-connected. Then X = A ∪ B where A and B are disjoint nonempty open sets in X. Since f is bijective, quasi gδs-open function f(A) and f(B) are open sets in Y. Moreover f(A) ∩ f(B) = ∅ and
$Y = f(A) \cup f(B)$, implies Y is not connected. This is contradiction to the hypothesis. Therefore X is $g\delta s$-connected.

Corollary 6.5.11. If $f : X \to Y$ is a bijective strongly $g\delta s$-open function from a space X onto $g\delta s$-connected space Y, then X is $g\delta s$-connected.

Proof: Since every strongly $g\delta s$-open function is quasi $g\delta s$-open and by theorem 6.5.10.

Corollary 6.5.12. If $f : X \to Y$ is a bijective $g\delta s$-open function from a space X onto $g\delta s$-connected space Y, then X is connected.

Proof: Since every strongly $g\delta s$-open function is $g\delta s$-open and by corollary 6.5.11.

Theorem 6.5.13. If $f : X \to Y$ is a completely $g\delta s$-continuous surjection and X is connected, then Y is $g\delta s$-connected.

Proof: Suppose Y is not $g\delta s$-connected. Then $Y = A \cup B$ where A and B are disjoint nonempty $g\delta s$-open sets in Y. Since f is a completely $g\delta s$-continuous surjection, $X = f^{-1}(A) \cup f^{-1}(B)$ are disjoint non empty regular open and so open subsets of X, implies X is not connected space. This is contradiction to the hypothesis. Therefore Y is $g\delta s$-connected.

Theorem 6.5.14. If $f : X \to Y$ is a perfectly $g\delta s$-continuous surjection and X is connected, then Y is $g\delta s$-connected.

Proof: Suppose Y is not $g\delta s$-connected. Then $Y = A \cup B$ where A and B are disjoint nonempty $g\delta s$-open sets in Y. Since f is a perfectly $g\delta s$-continuous surjection, $X = f^{-1}(A) \cup f^{-1}(B)$ are disjoint non empty clopen and so open subsets of X, implies X is not connected space. This is contradiction to the hypothesis. Therefore Y is $g\delta s$-connected.

Theorem 6.5.15. If X is a topological space with at least two points and if $SO(X) = SC(X)$, then X is not $g\delta s$-connected space.
Proof: If $SO(X) = SC(X)$, then by theorem 2.2.18, $P(X) = G\delta SC(X)$. Therefore there exists a proper subset of X which is both $g\delta s$-open and $g\delta s$-closed. Thus by the theorem 6.5.4, X is not $g\delta s$-connected space.

Thus a new class of homeomorphisms namely $g\delta s$-homeomorphisms, strongly $g\delta s$-homeomorphisms, $g\delta s$-compact, countably $g\delta s$-compact, $g\delta s$-Lindelöf and $g\delta s$-connectedness are introduced and discussed some of their characterizations and properties.