5. RESULTS AND DISCUSSION

The structures of newly synthesized novel 2-alkyl substituted oleo-benzimidazole derivatives (I-aa' to I-cd') were supported by IR, 1H NMR, 13C NMR, MS and elemental analyses.

IR spectra of all the compounds were taken on Fourier Transform Infrared (FTIR) Nicolet 5700 instrument using KBr pallets and also as liquid films.

The compounds (I-aa', I-ab', I-ba', I-bb', I-ca' & I-cb') showed IR strong absorption bands at 3456 - 3440 cm$^{-1}$ for -OH functional group in alkyl chain. All the compounds (I-aa' to I-cd') had -NH stretching bands at 3326 - 3210 cm$^{-1}$ in all imidazole ring of oleo-benzimidazole derivatives, respectively. The characteristic -C=N stretching bands at 1630 - 1612 cm$^{-1}$ were observed in all the compounds (I-aa' to I-cd'), respectively.

The 1H NMR spectra of the 5-substituted oleo-benzimidazoles (I-aa' to I-cd') were recorded on Bruker Avanace-300 (300 MHz) model instrument using CDCl$_3$ and DMSO as a solvent and TMS as internal standard.

The 1H NMR spectra of all the compounds (I-aa' to I-cd') exhibited structure revealing proton signals at δ 7.0 - 7.6 (multiplet, aromatic protons), δ 7.1 - 7.3 (s, 1H, -NH which is merged with aromatic protons and disappeared on D$_2$O addition) δ 3.5 - 3.9 (multiplet, 2H, -CH$_2$OH), δ
3.3 - 3.6 (singlet, 1H, -OH, disappeared on D2O addition), δ 4.2 - 4.8 (multiplet, 2H, -CH=CH-), δ 2.3 - 2.5 (singlet, 2H, 2 x [-CH-]), δ 1.1 - 1.6 (broad multiplet, shielded methylene protons) and δ 0.8 - 1.2 (singlet, 3H, terminal -CH3).

The 13C NMR spectra of all the compounds (I-aa' to I-cd') showed sharp singlet signals at δ 168 - 184 for imidazole carbon, at δ 128 - 146 for aromatic carbon atoms, δ 119 - 129 for sp2 hybridized carbons and at δ 10 - 94 saturated carbon atoms and tertiary carbon atoms with DMSO solvent signals.

The mass spectra of the 2-alkyl substituted oleo-benzimidazole derivatives (I-aa' to I-cd') were recorded on Shimazu mass spectrometer (GCMS) with ionization energy maintained at 70eV. Thus, all the compounds (I-aa' to I-cd') showed the corresponding molecular ion peaks (M +1). The X-ray analysis of the compound(s) is under progress.

Spectral details

Compound (Iaa'): Yield: 74 %; colourless crystals (ethanol), m.p 130-132

δ ppm: 3.3 - 3.6 (singlet, 1H, -OH, disappeared on D2O addition), δ 4.2 - 4.8 (multiplet, 2H, -CH=CH-), δ 2.3 - 2.5 (singlet, 2H, 2 x [-CH-]), δ 1.1 - 1.6 (broad multiplet, shielded methylene protons) and δ 0.8 - 1.2 (singlet, 3H, terminal -CH3).

The mass spectra of the 2-alkyl substituted oleo-benzimidazole derivatives (I-aa' to I-cd') were recorded on Shimazu mass spectrometer (GCMS) with ionization energy maintained at 70eV. Thus, all the compounds (I-aa' to I-cd') showed the corresponding molecular ion peaks (M +1). The X-ray analysis of the compound(s) is under progress.

Spectral details

Compound (Iaa'): Yield: 74 %; colourless crystals (ethanol), m.p 130-132

δ ppm: 3.3 - 3.6 (singlet, 1H, -OH, disappeared on D2O addition), δ 4.2 - 4.8 (multiplet, 2H, -CH=CH-), δ 2.3 - 2.5 (singlet, 2H, 2 x [-CH-]), δ 1.1 - 1.6 (broad multiplet, shielded methylene protons) and δ 0.8 - 1.2 (singlet, 3H, terminal -CH3).

The 13C NMR spectra of all the compounds (I-aa' to I-cd') showed sharp singlet signals at δ 168 - 184 for imidazole carbon, at δ 128 - 146 for aromatic carbon atoms, δ 119 - 129 for sp2 hybridized carbons and at δ 10 - 94 saturated carbon atoms and tertiary carbon atoms with DMSO solvent signals.

The mass spectra of the 2-alkyl substituted oleo-benzimidazole derivatives (I-aa' to I-cd') were recorded on Shimazu mass spectrometer (GCMS) with ionization energy maintained at 70eV. Thus, all the compounds (I-aa' to I-cd') showed the corresponding molecular ion peaks (M +1). The X-ray analysis of the compound(s) is under progress.

Spectral details

Compound (Iaa'): Yield: 74 %; colourless crystals (ethanol), m.p 130-132

δ ppm: 3.3 - 3.6 (singlet, 1H, -OH, disappeared on D2O addition), δ 4.2 - 4.8 (multiplet, 2H, -CH=CH-), δ 2.3 - 2.5 (singlet, 2H, 2 x [-CH-]), δ 1.1 - 1.6 (broad multiplet, shielded methylene protons) and δ 0.8 - 1.2 (singlet, 3H, terminal -CH3).

The 13C NMR spectra of all the compounds (I-aa' to I-cd') showed sharp singlet signals at δ 168 - 184 for imidazole carbon, at δ 128 - 146 for aromatic carbon atoms, δ 119 - 129 for sp2 hybridized carbons and at δ 10 - 94 saturated carbon atoms and tertiary carbon atoms with DMSO solvent signals.

The mass spectra of the 2-alkyl substituted oleo-benzimidazole derivatives (I-aa' to I-cd') were recorded on Shimazu mass spectrometer (GCMS) with ionization energy maintained at 70eV. Thus, all the compounds (I-aa' to I-cd') showed the corresponding molecular ion peaks (M +1). The X-ray analysis of the compound(s) is under progress.

Spectral details

Compound (Iaa'): Yield: 74 %; colourless crystals (ethanol), m.p 130-132

δ ppm: 3.3 - 3.6 (singlet, 1H, -OH, disappeared on D2O addition), δ 4.2 - 4.8 (multiplet, 2H, -CH=CH-), δ 2.3 - 2.5 (singlet, 2H, 2 x [-CH-]), δ 1.1 - 1.6 (broad multiplet, shielded methylene protons) and δ 0.8 - 1.2 (singlet, 3H, terminal -CH3).
DMSO carbons), MS: m/z 377 (M +1). Anal. Calcd. for C_{12}H_{36}N_{2}O_{3} : C 70.21, H 9.57, N 7.44, Found: C 70.12, H 9.42, N 7.12.

Compound (lab): Yield: 79 %; colourless crystals (ethanol), m.p 180-181 °C. IR (KBr cm⁻¹): 3456 cm⁻¹ (-OH stretching), 3326 cm⁻¹ (-NH stretching), 1615 cm⁻¹ (-C=N). \(^1\)H NMR (300 MHz, DMSO, 6ppm) 7.3 – 7.6 (m, 4H, Ar-H), 7.3 (s, 1H, -NH), 4.5 (m, 2H, -CH=CH-), 3.8 (m, 2H, -CH₂OH), 3.6 (s, 1H, -OH), 1.3 (bm, 24H, -[C₆H₂]). \(^{13}\)C NMR (300 MHz, DMSO, 6ppm) 180 (imidazole carbon), 130 – 140 (aromatic carbons), 120 – 126 (sp² hybridized carbons), 10– 85 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 343 (M +1). Anal. Calcd. for C_{22}H_{34}N_{2}O : C 77.19, H 9.94, N 8.18, Found: C 77.12, H 9.86, N 8.12.

Compound (lac): Yield: 76 %; colourless crystals (ethanol), m.p 210-211 °C. IR (KBr cm⁻¹): 3316 (NH), 1628(C=N-), \(^1\)H NMR (300 MHz, DMSO, 6ppm) 7.2 – 7.4 (m, 4H, Ar-H), 7.4 (s, 1H, -NH), 4.4 (m, 2H, -CH=CH-), 1.6 (bm, 28H), 0.9 (s, 3H, -CH₃). \(^{13}\)C NMR (300 MHz, DMSO 6ppm) 175 (imidazole carbon), 125 – 126 (sp² hybridized carbons), 129 - 136 (aromatic carbons) 12 – 93 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 355 (M +1). Anal. Calcd. for C_{24}H_{38}N_{2} : C 81.33, H 10.73, N 7.90; Found: C 81.23, H 10.62, N 7.88.

Compound (lad): Yield: 79 %; colourless crystals (ethanol), m.p 153- 154 °C. IR (KBr cm⁻¹): 3324 (NH), 1625(C=N-), \(^1\)H NMR (300 MHz, DMSO, 6ppm) 7.3 – 7.6 (m, 4H, Ar-H) 7.6 (s, 1H, -NH), 4.8 (m, 2H, -CH=CH-), 1.3
\(^{13} \text{C NMR} \) (300 MHz, DMSO \(\delta \) ppm) 175 (imidazole carbon) 122 - 126 (sp\(^2\) hybridized carbons), 129 - 143 (aromatic carbons), 10 - 91 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 257 (M+1). Anal. Calcd. for \(\text{C}_{17}\text{H}_{24}\text{N}_{2} \): C 79.68, H 9.37, N 10.93; Found: C 79.66, H 9.33, N 10.89.

Compound (Iba): Yield: 74 \%; colourless crystals (ethanol), m.p 164-165°C. IR (KBr cm\(^{-1}\)): 3312 (-NH), 1626(-C=\text{N}-).\(^1\) NMR (300 MHz, DMSO, \(\delta \) ppm) 7.1 - 7.4 (m, 4H, aromatic protons), 7.3(s, 1H, -NH), 3.8 (m, 2H, -\(\text{CH}_2\)OH) 3.4 (s, 3H, 3 x [-\text{OH}]), 2.5 (s, 2H), 1.3 (bm, 24H, ~[\text{CH}_2]~) shielded methylene protons). \(^{13}\)C NMR (300 MHz, DMSO, \(\delta \) ppm) 171 -182 (imidazole carbon), 128 - 138 (aromatic carbons), 12 - 86 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 455 (M+1). Anal. Calcd. for \(\text{C}_{22}\text{H}_{35}\text{N}_{2}\text{O}_{3}\text{Br} \): C 58.02, H 7.69, N 6.15; Found: C 57.96, H 7.62, N 6.02.

Compound (Ibb'): Yield: 75 \%; colourless crystals (ethanol), m.p 161-162°C. IR (KBr cm\(^{-1}\)): 3452 cm\(^{-1}\) (-OH), 3322 (NH), 1614(C=\text{N}-).\(^1\) NMR (300 MHz, DMSO, \(\delta \) ppm) 7.1 - 7.5 (m, 4H, aromatic protons), 7.3 (s, 1H, - \(\text{NH} \)), 4.3 (m, 2H, -\(\text{CH}=\text{CH} \)), 3.7 (m, 2H, -\(\text{CH}_2\)OH), 3.4 (s, 1H, -\(\text{OH} \)), 1.2 (bm, 24H, ~[\text{CH}_2]~). \(^{13}\)C NMR (300 MHz, DMSO, \(\delta \) ppm) 179 (imidazole carbon), 127 - 138 (aromatic carbons), 119 - 124 (sp\(^2\) hybridized carbons), 12- 88 (saturated carbons and tertiary carbons with DMSO carbons). MS:
Compound (Ibc′): Yield: 80%; colourless crystals (ethanol), m.p 220-222°C. IR (KBr cm⁻¹): 3321(NH), 1624(C=N-).¹H NMR (300 MHz, DMSO, δ ppm) 7.0 - 7.5 (m, 4H, Ar-H), 7.0(s, 1H, -NH), 4.2(m, 2H, -CH=CH-), 1.3 (bm, 28H, -[CH₂]), 0.8 (s, 3H, terminal -CH₃). ¹³C NMR (300 MHz, DMSO, δ ppm) 180 (imidazole carbon), 124 - 128 (sp² hybridized carbons), 131 - 136 (aromatic carbons) 10 - 92 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 434 (M+1). Anal. Calcd. for C₂₄H₃₇N₂Br: C 66.51, H 8.54, N 6.41; Found: C 66.36, H 8.42, N 6.39.

Compound (Ibd′): Yield: 75%; colourless crystals (ethanol), m.p 182-183°C. IR (KBr cm⁻¹): 3320(NH), 1622(C=N-).¹H NMR (300 MHz, DMSO, δ ppm) 7.1 - 7.5(m, 4H, Ar-H), 7.4 (s, 1H, -NH), 4.4 (m, 2H, -CH=CH-), 1.2 (bm, 16H, -[CH₂]). ¹³C NMR (300 MHz, DMSO, δ ppm) 182 (imidazole carbon), 120 - 126 (sp² hybridized carbons), 130 - 144 (aromatic carbons), 12 - 88 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 336(M+1). Anal. Calcd. for C₁₇H₂₃N₂Br: C 60.07, H 7.16, N 8.35; Found: C 60.01, H 7.09, N 8.28.

Compound (Ica′): Yield 79%; colourless crystals (ethanol), m.p 197-198°C. IR (KBr cm⁻¹): 3440 cm⁻¹ (-OH), 3310(-NH), 1622(C=N-).¹H NMR (300 MHz, DMSO, δ ppm) 7.2 - 7.4 (m, 4H, Ar-H), 7.4(s, 1H, -NH), 3.5 (m, 2H, -CH₂OH), 3.3 (s, 3H, 3 x [-OH]), 2.3 (s, 2H, 2 x [-CH⁻]), 1.2 (bm,
Compound (Icb): Yield: 72%; colourless crystals (ethanol), m.p 211-212
°C. IR (KBr cm⁻¹): 3450 cm⁻¹ (-OH), 3318(-NH), 1612(C=N-).³H NMR (300 MHz, DMSO, δ ppm) 7.0 - 7.5(m, 4H, Ar-H) 7.4 (s, 1H, -NH), 4.2 (m, 2H, -CH=CH-), 3.8 (m, 2H, -CH₂OH), 3.4 (s, 1H), 1.1 (bm, 2H, -[CH₂]).³C NMR (300 MHz, DMSO, δ ppm) 182 (imidazole carbon), 128 - 139 (aromatic carbons), 120 - 125 (sp² hybridized carbons), 14-90 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 388 (M+1). Anal. Calcd. for C₂₂H₃₅N₃O₅: C 68.21, H 8.52, N 10.85; Found: C 68.17, H 8.43, N 10.70.

Compound (Icc'): Yield: 80%; colourless crystals (ethanol), m.p 191-192
°C. IR (KBr cm⁻¹): 3324 (-NH), 1628(C=N-).¹H NMR (300 MHz, DMSO, δ ppm) 7.1 - 7.6(m, 4H, Ar-H) 7.6 (s, 1H, -NH), 4.3 (m, 2H, -CH=CH-), 1.2 (bm, 28H, -[CH₂]), 1.2 (s, 3H, -CH₃).³C NMR (300 MHz, DMSO, δ ppm) 184 (imidazole carbon), 125 - 129 (sp² hybridized carbons), 132 - 137 (aromatic carbons) 14 - 94 (saturated carbons and tertiary carbons with DMSO carbons). MS: m/z 400 (M+1). Anal. Calcd. for C₂₄H₃₇N₃O₂: C 72.18, H 9.27, N 10.52; Found: C 72.06, H 9.15, N 10.44.
Compound (Icd'): Yield: 73 %; colourless crystals (ethanol), m.p 225-226
°C. IR (KBr cm
$^{-1}$): 3326 (-NH), 1618 (C=\(N\)-).\(^1\)H NMR (300 MHz, DMSO, \(\delta\) ppm) 7.2 – 7.6 (m, 4H, aromatic protons), 7.4 (s, 1H, -NH), 4.3 (m, 2H, -\(CH=CH\)-), 1.3 (bm, 16H, \[-CH_2\]). The \(^{13}\)C NMR (300 MHz, DMSO, \(\delta\) ppm) 179 (imidazole carbon) 122 – 128 (sp\(^2\) hybridized carbons), 132-146 (aromatic carbons), 14 – 92 (saturated carbons and tertiary carbons with DMSO carbons). MS: \(m/z\) 302 (M+1). Anal. Calcd. for C\(_{17}\)H\(_{23}\)N\(_3\)O\(_2\) : C 67.74, H 7.64, N 12.64; Found: C 67.29, H 7.49, N 12.51.

The details regarding each spectrum of the compounds (Iaa'-Icd') are given in Table 2.

The IR, \(^1\)H NMR, \(^{13}\)C NMR and GC-MS of the compound Iac' are enclosed as Spectrum No. (1-4) for reference.
Table 1

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Elemental Analyses</th>
<th>Yield(%)</th>
<th>M.P.(°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbon(%)</td>
<td>Hydrogen (%)</td>
<td>Nitrogen(%)</td>
</tr>
<tr>
<td></td>
<td>Cald. Found</td>
<td>Cald. Found</td>
<td>Cald. Found</td>
</tr>
<tr>
<td>I-aa'</td>
<td>70.21</td>
<td>70.12</td>
<td>9.57</td>
</tr>
<tr>
<td>I-ab'</td>
<td>77.19</td>
<td>77.12</td>
<td>9.94</td>
</tr>
<tr>
<td>I-ac'</td>
<td>81.33</td>
<td>81.23</td>
<td>10.73</td>
</tr>
<tr>
<td>I-ad'</td>
<td>79.68</td>
<td>79.66</td>
<td>9.37</td>
</tr>
<tr>
<td>I-ba'</td>
<td>58.02</td>
<td>57.96</td>
<td>7.69</td>
</tr>
<tr>
<td>I-bb'</td>
<td>62.70</td>
<td>62.68</td>
<td>7.83</td>
</tr>
<tr>
<td>I-bc'</td>
<td>66.51</td>
<td>66.36</td>
<td>8.54</td>
</tr>
<tr>
<td>I-bd'</td>
<td>60.07</td>
<td>60.01</td>
<td>7.16</td>
</tr>
<tr>
<td>I-ca'</td>
<td>62.71</td>
<td>62.15</td>
<td>8.31</td>
</tr>
<tr>
<td>I-cb'</td>
<td>68.21</td>
<td>68.17</td>
<td>8.52</td>
</tr>
<tr>
<td>I-ce'</td>
<td>72.18</td>
<td>72.06</td>
<td>9.27</td>
</tr>
<tr>
<td>I-cd'</td>
<td>67.74</td>
<td>67.29</td>
<td>7.64</td>
</tr>
</tbody>
</table>
TABLE 2
Spectral Analysis

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>COMPOUND STRUCTURE</th>
<th>INFRARED CM⁻¹</th>
<th>¹H NUCLEAR MAGNETIC RESONANCE VALUES IN PPM</th>
<th>¹³C NUCLEAR MAGNETIC RESONANCE VALUES IN PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3446 cm⁻¹ -OH stretching, for hydroxyl group. 3316 cm⁻¹ -NH stretching, for -NH function. 1630 cm⁻¹ -C=N- stretching, for -C=N- function.</td>
<td>7.2 – 7.4 (m, 4H, aromatic protons) 7.2 – 7.3 (s, 1H, -NH which is merged with aromatic protons and disappeared on D₂O addition) 3.9 (m, 2H, -CH₂OH) 3.6 (s, 3H, 3 x [-OH], disappeared on D₂O addition) 2.4 (s, 2H, 2 x [-CH-]) 1.4 (bm, 24H, -[C₆H₂] shielded methylene protons)</td>
<td>170 – 180 (imidazole carbon) 130 – 140 (aromatic carbons) 10 – 80 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3456 cm⁻¹ -OH stretching, for hydroxyl group. 3326 cm⁻¹ -NH stretching, for -NH function. 1615 cm⁻¹ -C=N- stretching, for -C=N- function.</td>
<td>7.3 – 7.6 (m, 4H, aromatic protons) 7.3 – 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D₂O addition) 4.5 (m, 2H, -CH=CH-) 3.8 (m, 2H, -CH₂OH) 3.6 (s, 1H, -OH, disappeared on D₂O addition) 1.3 (bm, 24H, -[CH₂] shielded methylene protons)</td>
<td>170 – 180 (imidazole carbon) 130 – 140 (aromatic carbons) 120 – 126 (sp² hybridized carbons) 10 – 85 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>3320 cm(^{-1}) (-\text{NH stretching, for -NH function.})</td>
<td>7.2 - 7.4 (m, 4H, aromatic protons)</td>
<td>172 - 180 (imidazole carbon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1628 cm(^{-1}) (-\text{C=N- stretching, for -C=N- function.})</td>
<td>7.3 - 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition)</td>
<td>125 - 126 (sp(^2) hybridized carbons)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3324 cm(^{-1}) (-\text{NH stretching, for -NH function.})</td>
<td>7.3 - 7.6 (m, 4H, aromatic protons)</td>
<td>129 - 136 (aromatic carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1625 cm(^{-1}) (-\text{C=N- stretching, for -C=N- function.})</td>
<td>7.4 - 7.6 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition)</td>
<td>12 - 93 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3442 cm(^{-1}) (-\text{OH stretching, for hydroxyl group.})</td>
<td>7.1 - 7.4 (m, 4H, aromatic protons)</td>
<td>168 - 178 (imidazole carbon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3312 cm(^{-1}) (-\text{NH stretching, for -NH function.})</td>
<td>7.2 - 7.3 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition)</td>
<td>122 - 126 (sp(^2) hybridized carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1626 cm(^{-1}) (-\text{C=N- stretching, for -C=N- function.})</td>
<td>3.8 (m, 2H, -CH(_2)OH)</td>
<td>129 - 143 (aromatic carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4 (s,3H, 3 x [-OH], disappeared on D(_2)O addition)</td>
<td>10 - 91 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
</tbody>
</table>

173
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td></td>
<td>3452 cm(^{-1}) -OH stretching, for hydroxyl group. 3322 cm(^{-1}) -NH stretching, for -NH function. 1614 cm(^{-1}) -C/N- stretching, for -C=N- function.</td>
<td>7.1 - 7.5 (m, 4H, aromatic protons) 7.3-7.5 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition) 4.3 (m, 2H, -CH=CH-) 3.7 (m, 2H, -CH(_2)OH) 3.4 (s, 1H, -OH, disappeared on D(_2)O addition) 1.2 (bm, 24H, -[CH(_2)] shielded methylene protons)</td>
<td>174 - 179 (imidazole carbon) 119 - 124 (sp(^2) hybridized carbons) 127 - 138 (aromatic carbons) 12 - 88 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>3321 cm(^{-1}) -NH stretching, for -NH function. 1624 cm(^{-1}) -C/N- stretching, for -C=N- function.</td>
<td>7.0 - 7.5 (m, 4H, aromatic protons) 7.1 - 7.3 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition) 4.2 (m, 2H, -CH=CH-) 1.3 (bm, 28H, -[CH(_2)] shielded methylene protons) 0.8 (s, 3H, terminal -CH(_3))</td>
<td>170 - 180 (imidazole carbon) 124 - 128 (sp(^2) hybridized carbons) 131 - 136 (aromatic carbons) 10 - 92 (saturated carbons with DMSO carbons)</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>3320 cm(^{-1}) -NH stretching, for -NH function. 1622 cm(^{-1}) -C/N- stretching, for -C=N- function.</td>
<td>7.1 - 7.5 (m, 4H, aromatic protons) 7.2 - 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition) 4.4 (m, 2H, -CH=CH-) 1.2 (bm, 16H, -[CH(_2)] shielded methylene protons)</td>
<td>170 - 182 (imidazole carbon) 120 - 126 (sp(^2) hybridized carbons) 130 - 144 (aromatic carbons) 12 - 88 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9.</td>
<td>(\text{O}_2\text{N} \text{N} \text{H} \text{H} \text{OH} \text{OH})</td>
<td>(3440 \text{ cm}^{-1}) -OH stretching, for hydroxyl group.</td>
<td>7.2 - 7.4 (m, 4H, aromatic protons)</td>
<td>172 - 184 (imidazole carbon)</td>
</tr>
<tr>
<td></td>
<td>(I-cb')</td>
<td></td>
<td>7.3 - 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition)</td>
<td>130 - 140 (aromatic carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.5 (m, 2H, -CH(_2)OH)</td>
<td>12 - 90 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.3 (s, 3H, 3 x [-OH], disappeared on D(_2)O addition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3 (s, 2H, 2 x [-CH(_2)])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2 (bm, 24H, [-CH(_2)] shielded methylene protons)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(\text{O}_2\text{N} \text{N} \text{H} \text{H} \text{OH} \text{OH})</td>
<td>(3450 \text{ cm}^{-1}) -OH stretching, for hydroxyl group.</td>
<td>7.0 - 7.5 (m, 4H, aromatic protons)</td>
<td>170 - 182 (imidazole carbon)</td>
</tr>
<tr>
<td></td>
<td>(I-cb')</td>
<td></td>
<td>7.3 - 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D(_2)O addition)</td>
<td>120 - 125 (sp(^2) hybridized carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.2 (m, 2H, -CH=CH-)</td>
<td>128 - 139 (aromatic carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.8 (m, 2H, -CH(_2)OH)</td>
<td>14 - 90 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4 (s, 1H, -OH, disappeared on D(_2)O addition)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1 (bm, 24H, [-CH(_2)] shielded methylene protons)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3324 cm⁻¹ -NH stretching, for -NH function. 1628 cm⁻¹ -C=N- stretching, for -C=N- function.</td>
<td>7.1 - 7.6 (m, 4H, aromatic protons) 7.4 - 7.6 (s, 1H, -NH which is merged with aromatic protons and disappeared on D2O addition) 4.3 (m, 2H, -CH=CH-) 1.2 (bm, 28H, -[CH₂] shielded methylene protons) 1.2 (s, 3H, terminal -CH₃)</td>
<td>173 - 184 (imidazole carbon) 125 - 129 (sp₂ hybridized carbons) 132 - 137 (aromatic carbons) 14 - 94 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3326 cm⁻¹ -NH stretching, for -NH function. 1618 cm⁻¹ -C=N- stretching, for -C=N- function.</td>
<td>7.2 - 7.6 (m, 4H, aromatic protons) 7.3 - 7.4 (s, 1H, -NH which is merged with aromatic protons and disappeared on D2O addition) 4.3 (m, 2H, -CH=CH-) 1.3 (bm, 16H, -[CH₂] shielded methylene protons)</td>
<td>168 - 179 (imidazole carbon) 122 - 128 (sp₂ hybridized carbons) 132 - 146 (aromatic carbons) 14 - 92 (saturated carbons and tertiary carbons with DMSO carbons)</td>
</tr>
</tbody>
</table>
(CH₂)₇ CH=CH(CH₂)₇CH₃

l-ac'