TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>CLADDING</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>WELDING PROCESSES</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>EMPLOYED FOR CLADDING</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>CLADDING BY PLASMA TRANSFERRED ARC WELDING (PTAW)</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>NEED FOR THE STUDY</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>THESIS OBJECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>PLAN OF INVESTIGATIONS</td>
<td>8</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Prediction of clad bead geometry</td>
<td>8</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Cladding process optimisation to reduce weld dilution</td>
<td>9</td>
</tr>
</tbody>
</table>
1.6.3 Estimation of the residual stresses developed in stainless steel claddings

1.6.4 Liquid nitriding

1.6.5 Estimation of soundness and wear properties of stainless steel claddings

1.6.6 Corrosion studies

1.6.7 Studies on metallurgical characterisation
 1.6.7.1 Microhardness survey
 1.6.7.2 Studies on delta ferrite content in stainless steel claddings
 1.6.7.3 Metallographic studies

1.7 SEQUENCE OF INVESTIGATIONS

1.8 THESIS ORGANISATION

2 LITERATURE SURVEY

2.1 INTRODUCTION

2.2 PLASMA TRANSFERRED ARC WELDING (PTAW) PROCESS
 2.2.1 Applications of PTAW process

2.3 TYPES OF STAINLESS STEELS
 2.3.1 Austenitic stainless steels
 2.3.2 ‘L’ grade in stainless steels and their significance
 2.3.3 AISI 316 L stainless steels
2.3.4 Sensitization in AISI 316 L stainless steels 23
2.3.5 Applications of AISI 316 L stainless steels 23

2.4 CLAD BEAD GEOMETRY 24

2.5 DILUTION AND ITS CONTROL 27

2.6 DESIGN OF EXPERIMENTS 29

2.7 EXPERIMENTAL DESIGN 30

2.8 MATHEMATICAL MODELLING OF WELDING PROCESS PARAMETERS 31

2.9 RESPONSE SURFACE METHODOLOGY 31

2.10 EFFECTS OF CLADDING PROCESS PARAMETERS ON CLAD BEAD GEOMETRY AND THEIR OPTIMISATION 34

2.11 EVALUATION OF RESIDUAL STRESS IN STAINLESS STEEL CLADDING BY X-RAY DIFFRACTION (XRD) METHOD 36

2.11.1 Residual stress 36
2.11.2 Origin of residual stresses 36
2.11.3 X-ray diffraction 37
2.11.4 Residual stress measurement methods 37
2.11.5 Bragg’s law and its application in x-ray diffraction 38
2.12 MEASUREMENT OF RESIDUAL STRESS BY X-RAY DIFFRACTION-Sin²ψ METHOD

2.13 LIQUID NITRIDING
 2.13.1 Liquid nitriding
 2.13.2 Gas nitriding
 2.13.3 Plasma nitriding

2.14 LIQUID NITRIDING MECHANISM

2.15 LIQUID NITRIDING OF STAINLESS STEEL CLADDING

2.16 TESTING FOR SOUNDNESS OF STAINLESS STEEL CLADDING

2.17 WEAR RESISTANCE OF STAINLESS STEEL CLADDING

2.18 CORROSION RESISTANCE OF STAINLESS STEELS

2.19 CORROSION RESISTANCE OF STAINLESS STEEL CLADDINGS

2.20 PITTING CORROSION
 2.20.1 Pitting corrosion in stainless steel cladding
 2.20.2 Pitting factor and Pitting Resistance Equivalent Number (PREN)

2.21 INTERGRANULAR CORROSION
2.21.1 Intergranular corrosion in stainless steel cladding

2.22 CORROSION MEASUREMENT METHODS
2.22.1 Corrosion weight loss coupons
2.22.2 Electrochemical Potentiodynamic Reactivation (EPR) tests

2.23 EFFECT OF DELTA FERRITE ON CORROSION RESISTANCE OF STAINLESS STEEL

2.24 STUDIES ON INFLUENCE OF FERRITE NUMBER IN STAINLESS STEEL CLADDING

2.25 METALLURGICAL CHARACTERISATION OF STAINLESS STEEL CLADDING
2.25.1 Microhardness survey in stainless steel cladding
2.25.2 Microstructural studies in stainless steel cladding

2.26 SUMMARY

DEVELOPMENT OF REGRESSION MODELS FOR PREDICTION AND OPTIMISATION OF AISI 316 L CLAD BEAD GEOMETRY

3.1 INTRODUCTION
3.2 SUBSTRATE MATERIAL AND CLAD OVERLAY ALLOY

3.3 PTAW EXPERIMENTAL SETUP

3.4 SCHEME OF INVESTIGATIONS
 3.4.1 Identification of PTAW process parameters
 3.4.2 Finding limits and levels of PTAW process parameters
 3.4.3 Development of design matrix
 3.4.4 Conducting experiments as per design matrix
 3.4.5 Recording the responses
 3.4.6 Development of regression models
 3.4.7 Assessing the adequacy of the developed models
 3.4.8 Development of final mathematical model
 3.4.9 Conformity Test

3.5 RESULTS AND DISCUSSION
 3.5.1 Direct effects of PTAW process parameters on clad bead geometry
 3.5.1.1 Effect of welding current on clad bead geometry
3.5.1.2 Effect of travel speed on clad bead geometry
3.5.1.3 Effect of powder feed rate on clad bead geometry
3.5.1.4 Effect of oscillation frequency on clad bead geometry
3.5.1.5 Effect of torch standoff on clad bead geometry

3.5.2 Interaction effects of PTWA process parameters on clad bead geometry
3.5.2.1 Interaction effect of welding current and travel speed on dilution
3.5.2.2 Interaction effect of welding current and torch standoff on penetration
3.5.2.3 Interaction effect of welding current and powder feed rate on penetration
3.5.2.4 Interaction effect of welding current and powder feed rate on reinforcement
3.5.2.5 Interaction effect of powder feed rate and oscillation frequency on dilution

3.6 OPTIMISATION OF THE PTAW PROCESS PARAMETERS USING EXCEL SOLVER

3.6.1 Introduction

3.6.2 Optimisation of the PTAW process parameters using Excel solver

3.6.3 Conformity test

3.7 SUMMARY

4 ESTIMATION OF RESIDUAL STRESSES IN STAINLESS STEEL CLADDINGS

4.1 INTRODUCTION

4.2 PRODUCTION OF STAINLESS STEEL CLADDINGS

4.3 DETERMINATION OF THE ANGLE OF DIFFRACTION BY XRD METHOD

4.4 RESIDUAL STRESS MEASUREMENTS IN CLADDINGS USING X-RAY DIFFRACTION (XRD) METHOD

4.5 RESULTS AND DISCUSSION

4.6 SUMMARY
LIQUIDNITRIDING OF STAINLESS STEEL CLADDING AND OPTIMISATION OF LIQUIDNITRIDING PROCESS

5.1 INTRODUCTION

5.2 CONVENTIONAL LIQUID NITRIDING OF STAINLESS STEELS

5.3 MODIFICATIONS MADE IN THE PRESENT INVESTIGATION

5.4 PLAN OF INVESTIGATION

5.4.1 Prediction of important liquidnitriding process parameters

5.4.2 Developing the experimental design matrix and to conduct experiments as per design matrix

5.4.3 Experimental procedure, Recording the responses and Regression modelling

5.4.4 Accessing the adequacy of the models and to test their coefficients for significance

5.4.5 Determination of final model

5.5 RESULTS AND DISCUSSION

5.5.1 Direct effects of nitriding process parameters
5.5.1.1 Effect of nitriding temperature on nitrided layer thickness 117

5.5.1.2 Effect of processing time on nitrided layer thickness 118

5.5.2 Interaction effects of nitriding process parameters 118

5.5.2.1 Interaction effects of nitriding temperature and processing time on nitrided layer thickness 118

5.6 OPTIMISATION OF NITRIDING PROCESS PARAMETERS USING EXCEL SOLVER 119

5.7 HARDNESS–DEPTH PROFILE OF THE NITRIDED SPECIMENS CLADDED AT DIFFERENT HEAT INPUTS 122

5.8 SUMMARY 123

6 ESTIMATION OF SOUNDNESS AND WEAR PROPERTIES OF STAINLESS STEEL CLADDINGS 124

6.1 INTRODUCTION 124

6.2 EXPERIMENTAL PROCEDURE 124

6.2.1 Bend test 124

6.2.2 Wear test 125

6.3 RESULTS AND DISCUSSION 128

6.3.1 Bend test 128
6.3.2 Wear of nitrided specimens cladded at different heat input conditions

6.3.3 Wear rate of nitrided specimens cladded with different heat inputs

6.4 SCANNING ELECTRON MICROSCOPIC (SEM) IMAGES OF SPECIMENS CLADDED AT DIFFERENT HEAT INPUTS

6.5 SUMMARY

7 STUDIES ON CORROSION RESISTANCE OF STAINLESS STEEL CLADDINGS

7.1 INTRODUCTION

7.2 PLAN OF INVESTIGATION

7.3 WEIGHT LOSS TESTS

7.3.1 Total immersion ferric chloride test as per ASTM-G-48

7.3.1.1 Preparation of the test specimen and test solution

7.3.1.2 Experimental procedure

7.3.2 Boiling nitric acid test (Huey’s test) as per ASTM-A-262-C

7.3.2.1 Preparation of the test specimen and test solution

7.3.2.2 Experimental procedure

7.4 SINGLE LOOP EPR TEST AS PER ASTM G-5
7.4.1 Preparation of the test specimen and test solution 139

7.4.2 Experimental procedure 140

7.5 DOUBLE LOOP EPR AS PER ASTMG-108 141

7.6 RESULTS AND DISCUSSION 142

7.6.1 Weight loss tests 142

7.6.1.1 Total immersion ferric chloride test 142

7.6.1.2 Boiling nitric acid test (Huey’s test) 143

7.6.2 Single loop EPR test as per ASTM G-5 147

7.6.3 Double loop EPR as per ASTM G - 108 153

7.7 SUMMARY 156

8 METALLURGICAL STUDIES ON STAINLESS STEEL CLADDINGS 157

INTRODUCTION 157

EXPERIMENTAL PROCEDURE 158

8.2.1 Measurement of microhardness in stainless steel claddings 158

8.2.2 Measurement of Ferrite number in stainless steel claddings 159

8.2.3 Microstructural analysis in stainless steel cladding 160
8.3 RESULTS AND DISCUSSION 161
8.3.1 Measurement of microhardness in stainless steel claddings 161
8.3.2 Measurement of Ferrite number in stainless steel claddings 165
8.3.3 Microstructural analysis in stainless steel cladding 165
8.4 SUMMARY 170

9 CONCLUSIONS 171
9.1 INTRODUCTION 171
9.2 THESIS CONTRIBUTIONS 171
9.3 SCOPE FOR FUTURE RESEARCH WORK 173
REFERENCES 175
LIST OF PUBLICATIONS 190
VITAE 191
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Welding processes and their characteristics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical composition of the substrate and the clad metal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Mechanical properties of the substrate and the clad metal</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Control parameters and their levels</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental design matrix and measured values of bead dimensions</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Results of ANOVA</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Comparison of predicted and actual values of clad bead parameters</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Optimised PTAW process parameters</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Optimised values of clad bead geometry</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Results of the conformity test with optimised process parameters</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Comparison of clad bead cross sections</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Longitudinal surface residual stress measured using XRD method</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Liquid nitriding process parameters and their levels</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Design matrix with measured value of nitrided layer thickness</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Analysis of variance for testing the adequacy of models</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of square multiple R values and standard error of estimate of full and reduced model</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Optimised liquid nitriding process parameters</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Designation of the wear test specimens</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Wear properties of claddings</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Results of total immersion ferric chloride test</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Results of Huey’s test</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Results of Single loop EPR test</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>Results of Double loop EPR test</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Details of etchants used for base and clad metals</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Variation of ferrite number on the surface of the cladding</td>
<td>165</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Clad bead geometry</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Plan of investigations</td>
<td>15</td>
</tr>
<tr>
<td>1.3</td>
<td>Sequence of investigations</td>
<td>16</td>
</tr>
<tr>
<td>2.1</td>
<td>Cross section of a typical clad bead</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>Diffraction of x-rays by a crystal and Bragg’s law</td>
<td>38</td>
</tr>
<tr>
<td>2.3</td>
<td>The diffractometer scheme</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Diffraction in a tilted sample</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Directions of stress and strain components</td>
<td>40</td>
</tr>
<tr>
<td>2.6</td>
<td>WRC-1992 diagram</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>Pseudo binary phase diagram for Fe-18% Cr-8% Ni alloy with varying carbon content</td>
<td>64</td>
</tr>
<tr>
<td>3.1</td>
<td>Scanning Electron Micrograph of AISI 316 L stainless steel powder</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>The PTAW weld surfacing system</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>Cladded specimens</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>Cross section of a typical clad bead</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>Direct effect of welding current on clad bead geometry</td>
<td>81</td>
</tr>
<tr>
<td>3.6</td>
<td>Direct effect of travel speed on clad bead geometry</td>
<td>82</td>
</tr>
<tr>
<td>3.7</td>
<td>Direct effect of powder feed rate on clad bead geometry</td>
<td>83</td>
</tr>
<tr>
<td>3.8</td>
<td>Direct effect of oscillation frequency on clad bead geometry</td>
<td>83</td>
</tr>
<tr>
<td>3.9</td>
<td>Direct effect of torch standoff on clad bead geometry</td>
<td>84</td>
</tr>
</tbody>
</table>
3.10 Interaction effects of welding current and travel speed on dilution 85
3.11 Interaction effects of welding current and torch stand off on penetration 86
3.12a Interaction effects of welding current and powder feed rate on penetration 87
3.12b Response surface showing interaction effect of welding current and powder feed rate on penetration 87
3.13a Interaction effects of welding current and powder feed rate on reinforcement 88
3.13b Response surface showing interaction effect of welding current and powder feed rate on reinforcement 89
3.14a Interaction effects of powder feed rate and oscillation frequency on dilution 89
3.14b Response surface showing interaction effect of powder feed rate and oscillation frequency on dilution 90
3.15 Comparison of clad bead cross sections 95
4.1 PTA weld cladding carried out at: (a) Low heat input (b)Medium Heat input (c) High heat input and (d)Optimum heat input 99
4.2 Schematic diagram of an x-ray diffractometer 100
4.3 XRD equipment used for residual stress measurements showing: (a) control panel and (b) PC interface 102
4.4 Electro-chemical polishing done prior to residual stress measurements 103
4.5 Residual stress measurement under progress 103
4.6 Longitudinal residual stress profiles of claddings 105
obtained at (a) Low heat input (b) Medium heat input (c) High heat input and (d) Optimum heat input conditions

4.7 Longitudinal residual stress profiles in AISI 316 L claddings deposited at different heat input conditions

5.1 Specimen cladded by PTAW at optimum conditions

5.2 Effect of nitriding temperature on nitrided layer thickness

5.3 Effect of processing time on nitrided layer thickness

5.4 Interaction effects of nitriding temperature and processing time (PT) on nitrided layer thickness

5.5 Microscopic cross section of cladding nitrided at optimum condition (X400)

5.6 SEM showing the cross section of the cladding nitrided at optimum condition

5.7 Hardness depth profiles of nitrided claddings

6.1 Specimens for wear test

6.2 Dry sliding wear test set up

6.3 Side bend test specimens

6.4 Face bend test specimens

6.5 Comparison of wear rates of nitrided specimens cladded at different heat input conditions

6.6 Comparison of wear resistance of nitrided specimens cladded at different heat input conditions

6.7 Scanning electron micrographs showing worn surfaces

6.8 Scanning Electron Micrograph showing worn surface of base metal

7.1 Huey’s test setup showing: (a) the glass cradle and
(b) Erlenmeyer flask fitted with an Allihn condenser

7.2 Specimens with (a) low heat input, 4.10 KJ/mm (b) high heat input, 6.81 KJ/mm (c) optimum heat input, 4.61 KJ/mm and (d) optimum (4.61 KJ/mm) and liquid nitrided condition, (I) before and (II) after Single loop EPR test

7.3 EPR test set up showing: (a) Schematic diagram and (b) Experimental set up

7.4 SEM photomicrograph of nitrided claddings produced at optimum heat input (4.61 KJ/mm) condition after Huey’s test showing a stepped structure, X500

7.5 SEM photomicrograph of nitrided cladding produced at optimum heat input (4.61 KJ/mm) condition after Huey’s test showing a stepped structure, X2000

7.6 SEM photomicrograph of high heat input specimen (6.81 KJ/mm) after Huey’s test showing a ditched structure, X500

7.7 SEM photomicrograph of high heat input specimen (6.81 KJ/mm) after Huey’s test showing a ditched structure, X2000

7.8 Single loop EPR curve for a specimen cladded at low heat input (4.10 KJ/mm) condition

7.9 Single loop EPR curve for a specimen cladded at high heat input (6.81 KJ/mm) condition

7.10 Single loop EPR curve for a specimen cladded at optimum heat input (4.61 KJ/mm) condition

7.11 Single loop EPR curve for a specimen nitrided and cladded at optimum heat input (4.61 KJ/mm) condition
7.12 Optical micrograph of the nitrided cladding produced at optimum heat input condition after single loop EPR test
7.13 SEM micrograph of the nitrided cladding produced at optimum heat input condition after single loop EPR test
7.14 Optical micrograph of the cladding produced at high heat input condition after single loop EPR test
7.15 SEM micrograph of the cladding produced at high heat input condition after single loop EPR test
7.16 Double loop EPR curve for a specimen cladded at low heat input (4.10 KJ/mm) condition
7.17 Single loop EPR curve for a specimen cladded at high heat input (6.81 KJ/mm) condition
7.18 Single loop EPR curve for a specimen cladded at optimum heat input (4.61 KJ/mm) condition
7.19 Single loop EPR curve for a specimen nitrided and cladded at optimum heat input (4.61 KJ/mm) condition
8.1 Microhardness testing machine
8.2 Feritescope used for Ferrite number measurements
8.3 Different locations of Ferrite number measurement
8.4 Microhardness distribution at different regions at low heat input condition
8.5 Microhardness distribution at different regions at medium heat input condition
8.6 Microhardness distribution at different regions at high heat input condition
8.7 Microhardness distribution at different regions at optimum heat input condition
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>Microstructure of the base metal</td>
<td>166</td>
</tr>
<tr>
<td>8.10</td>
<td>Microstructure of the cladding deposited at low heat input (4.10 KJ/mm) condition</td>
<td>167</td>
</tr>
<tr>
<td>8.11</td>
<td>Microstructure of the cladding deposited at medium heat input (5.54 KJ/mm) condition</td>
<td>168</td>
</tr>
<tr>
<td>8.12</td>
<td>Microstructure of the cladding deposited at high heat input (6.81 KJ/mm) condition</td>
<td>168</td>
</tr>
<tr>
<td>8.13</td>
<td>Microstructure of the cladding deposited at optimum heat input (6.81 KJ/mm) condition</td>
<td>169</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

CV Coefficient of Variation
D Dilution (%)
DC Direct Current (A)
E_{corr} Corrosion potential (mV)
E_o Open circuit potential (mV)
E_p Pitting potential (mV)
F Powder feed rate (g/min)
H Oscillation frequency
HI Heat Input (kJ/cm)
I Welding current (Amps)
lpm litres per minute
N Torch standoff distance (mm)
P Penetration (mm)
R Reinforcement (mm)
R^2 Determination coefficient
S Travel speed (mm/min)
TA Total Area (mm2)
T_N Nitriding temperature (°C)
T_S Soaking time (°C)
T Nitrided layer thickness (µm)
V Welding voltage (V)
VHN Vickers Hardness Number (VHN)
W Width of clad bead (mm)
Y Response
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASM</td>
<td>American Society of Metals</td>
</tr>
<tr>
<td>ASS</td>
<td>Austenitic Stainless Steel</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BM</td>
<td>Base Metal</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>GMAW</td>
<td>Gas Metal Arc Welding</td>
</tr>
<tr>
<td>GTAW</td>
<td>Gas Tungsten Arc Welding</td>
</tr>
<tr>
<td>MIG</td>
<td>Metal Inert Gas Welding</td>
</tr>
<tr>
<td>PTAW</td>
<td>Plasma Transferred Arc Welding</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>SAW</td>
<td>Submerged Arc Welding</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated Calomel Electrode</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SMAW</td>
<td>Shielded Metal Arc Welding</td>
</tr>
<tr>
<td>TIG</td>
<td>Tungsten Inert Gas Welding</td>
</tr>
<tr>
<td>UNS</td>
<td>Unified Numbering System</td>
</tr>
<tr>
<td>WM</td>
<td>Weld Metal</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>