Chapter 7

Ramanujan’s Cubic Continued Fraction

7.1 Introduction

Let, for $|q| < 1$,

$$G(q) := \frac{q^{1/3}}{1 + \frac{q + q^2}{1 + \frac{q^2 + q^4}{1 + \frac{q^3 + q^6}{1 + \cdots}}}},$$ \hspace{1cm} (7.1.1)

denote Ramanujan’s cubic continued fraction, first introduced by him in his second letter to Hardy [22]. Ramanujan also recorded this continued fraction on page 366 of his lost notebook [49], and claimed that there are many results of $G(q)$ which are analogous to Rogers-Ramanujan continued fraction $R(q)$. Motivated by Ramanujan’s claims, H.H. Chan [32] proved many new identities which probably were the identities vaguely referred by Ramanujan. He established some reciprocity theorems for $G(q)$, found relations between $G(q)$ and the three continued fractions $G(-q), G(q^2)$ and $G(q^3)$ and obtained some explicit evaluations of $G(q)$.

Note: Some parts of this chapter consist of our papers [8] and [9].

101
We note that his proof of the relation between $G(q)$ and $G(q^3)$ is not satisfactory. In particular, the last deduction [32, (2.18), p. 347] is not an obvious one. In Section 7.2 of this chapter, we find an easy proof of this relation.

In Section 7.3, we establish some theta-function identities recorded by Ramanujan in the unorganized pages of both his first and second notebooks [48]. Berndt [17] also proved these identities via parameterization.

In Section 7.4, we give some more theorems for the explicit evaluation of the quotients of theta-functions by using the identities found in the previous section.

In Section 7.5, we combine the theorems found in Section 7.4 with some other theta-function identities to deduce a number of explicit evaluations for $G(q)$. In fact, we have found general formulas for the explicit evaluations of $G(-e^{-3\pi\sqrt{9}})$ and $G(e^{3\pi\sqrt{9}})$. General formulas for the explicit evaluations of $G(-e^{-\pi\sqrt{9}})$ and $G(e^{\pi\sqrt{9}})$, were established by Berndt, Chan and Zhang [24].

In Section 7.6, we give three new eta-function identities, and use them in our final section to find two new identities giving relations between $G(q)$ and the two continued fractions $G(q^5)$ and $G(q^7)$.

7.2 A Relation Between $G(q)$ and $G(q^3)$

H.H. Chan [32] found the following beautiful relation connecting $G(q)$ and $G(q^3)$. As we already mentioned in the Introduction, his proof is not satisfactory. Here we give a simple proof of his theorem.
7.2. A RELATION BETWEEN $G(q)$ AND $G(q^3)$

Theorem 7.2.1 If $G(q)$ is as defined in (7.1.1), then

$$G^3(q) = G(q^3) \frac{1 - G(q^3) + G^2(q^3)}{1 + 2G(q^3) + 4G^2(q^3)}. \quad (7.2.1)$$

Proof: From Entry 1(i) [15, p. 345], we note that

$$1 + \frac{1}{G(q)} = \frac{\psi(q^{1/3})}{q^{1/3}\psi(q^3)}, \quad (7.2.2)$$

and

$$1 + \frac{1}{G^3(q)} = \frac{\psi^4(q)}{q^4\psi(q^9)}, \quad (7.2.3)$$

where $\psi(q)$ is as defined in (2.1.24).

Replacing q by q^3 in (7.2.2), we find that

$$1 + \frac{1}{G(q^3)} = \frac{\psi(q)}{q\psi(q^9)}. \quad (7.2.4)$$

Now, from Entry 1(ii) [15, p. 345], we note that

$$\left(1 + 3q \frac{\psi(-q^3)}{\psi(-q)} \right)^3 = 1 + 9q \frac{\psi^4(-q^3)}{\psi^4(-q)}. \quad (7.2.5)$$

Replacing q by $-q$ in (7.2.3) and (7.2.4), and then using the resultant identities in (7.2.5), we find that

$$\left(1 - \frac{3\psi}{1 + \psi}\right)^3 = 1 - \frac{9u}{1 + u}, \quad (7.2.6)$$

where $w = G(-q^3)$ and $u = G^3(-q)$.

Solving (7.2.6) for u, we find that

$$u = 1 - \frac{((1 - 2w)/(1 + w))^3}{8 + (\{(1 - 2w)/(1 + w))^3}. \quad (7.2.7)$$
Simplifying (7.2.7), we obtain
\[u = w \frac{1 - w + w^2}{1 + 2w + 4w^2}. \] (7.2.8)

Replacing \(q \) by \(-q\) in (7.2.8), we complete the proof.

7.3 A Theta-Function Identity

The following theorem was recorded by Ramanujan on page 4 of his second notebook [48]. It is extremely useful in our calculations. Berndt [17, p. 202] proved this theorem via parameterization. Here we prove this from theta-function identities.

Theorem 7.3.1 If \(\chi \) and \(\psi \) are as defined in (2.1.26) and (2.1.24), respectively, then

\[\frac{\chi^3(q)}{\chi(q^3)} = 1 + 3q \frac{\psi(-q^9)}{\psi(-q)}, \] (7.3.1)

Proof: From Corollary (ii) of Chapter 16 in Berndt's book [15, p. 49], we find that

\[\psi(q) - q\psi(q^9) = f(q^3, q^6). \] (7.3.2)

Using Jacobi's triple product identity [15, Entry 19, p. 35], Berndt [15, p. 350] proved that

\[f(q, q^2) = \frac{\phi(-q^3)}{\chi(-q)}. \] (7.3.3)

Replacing \(q \) by \(q^3 \) in (7.3.3), and then using the resultant identity in (7.3.2), we find that

\[\psi(q) - q\psi(q^9) = \frac{\phi(-q^9)}{\chi(-q^3)}. \] (7.3.4)

Now, from Corollary (i) [15, p. 49] and (2.1.43), we find that

\[\phi(-q^9) = \phi(-q) + 2q\psi(q^9)\chi(-q^3). \] (7.3.5)
7.4. EXPLICIT EVALUATIONS OF THETA-FUNCTIONS

Invoking (7.3.5) in (7.3.4), we deduce that

\[\psi(q) - 3q\psi(q^0) = \frac{\phi(-q)}{\chi(-q^3)}. \]

(7.3.6)

Thus,

\[1 - 3q\frac{\psi(q^0)}{\psi(q)} = \frac{\phi(-q)}{\chi(-q^3)\psi(q)}. \]

(7.3.7)

Now from Entry 24(iii) [15, p. 39], we note that

\[\chi(q) = \sqrt[3]{\frac{\phi(q)}{\psi(-q)}}. \]

(7.3.8)

Replacing \(q \) by \(-q \) in (7.3.7) and then using (7.3.8), we complete the proof of the theorem.

7.4. Explicit evaluations of theta-functions

Theorem 7.4.1

(i) \(e^{-\pi \sqrt{n}} \frac{\psi(-e^{-\pi \sqrt{n}})}{\psi(-e^{-\pi \sqrt{n}})} = \frac{1}{3} \left(\sqrt{2} \frac{G_n^3}{G_{9n}} - 1 \right) \)

(7.4.1)

and

(ii) \(e^{-\pi \sqrt{n}} \frac{\psi(e^{-\pi \sqrt{n}})}{\psi(e^{-\pi \sqrt{n}})} = \frac{1}{3} \left(1 - \sqrt{2} \frac{g_n^3}{g_{9n}} \right) \)

(7.4.2)

Proof: From Theorem 7.3.1 and the definition of \(G_n \) from (3.1.2), we easily arrive at (7.4.1). To prove (ii), we replace \(q \) by \(-q \) in Theorem 7.3.1 and then use the definition of \(g_n \) from (3.1.2).

Since, \(G_{9n} \) and \(g_{9n} \) can be calculated from the respective values of \(G_n \) and \(g_n \) [24], from the above theorem, we see that the certain quotients of theta-functions on the right sides can be evaluated if the corresponding values of \(G_n \) and \(g_n \) are known. We give only a couple of examples below.
Corollary 7.4.2

\[e^{-\pi} \frac{\psi(-e^{-9\pi})}{\psi(-e^{-\pi})} = \frac{\sqrt{2}(\sqrt{3} - 1) - 1}{3}. \] (7.4.3)

Proof: Putting \(n = 1 \) in Theorem 7.4.1(i), we find that

\[e^{-\pi} \frac{\psi(-e^{-9\pi})}{\psi(-e^{-\pi})} = \frac{1}{3} \left(\sqrt{2} \frac{G_1^3}{G_9} - 1 \right). \] (7.4.4)

From Berndt’s book [16, p. 189],

\[G_1 = 1 \quad \text{and} \quad G_9 = \left(\frac{1 + \sqrt{3}}{\sqrt{2}} \right)^{1/3}. \] (7.4.5)

Employing (7.4.5) in (7.4.4), and simplifying we complete the proof.

From Entry 11(ii) [15, p. 123], we find that

\[\psi(-e^{-\pi}) = \phi(e^{-\pi}) 2^{-3/4} e^{\pi/8}. \] (7.4.6)

Since

\[\phi(e^{-\pi}) = \frac{\pi^{1/4}}{\Gamma \left(\frac{3}{4} \right)} \]

is classical [62], (7.4.3) and (7.4.6) provide an explicit evaluation for \(\psi(-e^{-9\pi}) \).

Corollary 7.4.3

\[e^{-\pi \sqrt{5/3}} \frac{\psi(-e^{-3\pi\sqrt{5}/5})}{\psi(-e^{-\pi\sqrt{5}/3})} = \frac{(3 + \sqrt{5})(\sqrt{5} - \sqrt{3}) - 2}{6}. \] (7.4.7)

Proof: Putting \(n = 5/9 \) in Theorem 7.4.1(i), we obtain

\[e^{-\pi \sqrt{5/3}} \frac{\psi(-e^{-3\pi\sqrt{5}/5})}{\psi(-e^{-\pi\sqrt{5}/3})} = \frac{1}{3} \left(\sqrt{2} \frac{G_{5/9}^3}{G_5} - 1 \right). \] (7.4.8)
7.5. **EXPLICIT FORMULAS FOR $G(-e^{-3\pi\sqrt{n}})$ AND $G(e^{-3\pi\sqrt{n}})$**

Now, from Berndt's book [18, pp. 189 and 345], we note that

$$G_5 = \left(\frac{1 + \sqrt{5}}{2}\right)^{1/4} \quad \text{and} \quad G_{5/9} = \left(\frac{\sqrt{5} - \sqrt{3}}{2}\right)^{1/3} \quad (7.4.9)$$

Employing (7.4.9) in (7.4.8), and then simplifying we arrive at (7.4.7).

Since by Theorem 5.3.3 of Chapter 5, we know the explicit formula for $\phi(q^9)/\phi(q)$, for $q = e^{-\pi\sqrt{n}}$, a positive rational, we now derive an identity by which the corresponding values of the quotients $\psi(-q^9)/\psi(-q)$ may be found.

Theorem 7.4.4

$$q \frac{\psi(-q^9)}{\psi(-q)} = \frac{1 - \phi(q^9)/\phi(q)}{(3\phi(q^9)/\phi(q)) - 1}. \quad (7.4.10)$$

Proof: Replacing q by $-q$ in (7.3.4) and (7.3.6) and then dividing the first resulting identity by the second, we find that

$$\frac{\phi(q^9)}{\phi(q)} = \frac{\psi(-q) + q\psi(-q^9)}{\psi(-q) + 3q\psi(-q^9)}. \quad (7.4.11)$$

It is now easy to see that (7.4.10) and (7.4.11) are equivalent.

7.5 Explicit formulas for $G(-e^{-3\pi\sqrt{n}})$ and $G(e^{-3\pi\sqrt{n}})$

Berndt, Chan and Zhang [24] have found general formulas for $G(-e^{-\pi\sqrt{n}})$ and $G(e^{-\pi\sqrt{n}})$ by employing the formulas connecting G_n and G_{b_n}, and g_n and g_{b_n}, respectively. Using the formulas for the explicit evaluations of the quotients of theta-functions found in the previous section, we can find the general formulas for $G(-e^{-3\pi\sqrt{n}})$ and $G(e^{-3\pi\sqrt{n}})$

From Entry 1(i) [15, p. 345], we find that

$$G(-q^3) = \frac{-q\psi(-q^9)/\psi(-q)}{1 + q\psi(-q^9)/\psi(-q)}. \quad (7.5.1)$$

There are assumed results under need of Bennett, Chan, Zhang.
Replacing q by $-q$ in (7.5.1), we find that

$$G(q^3) = \frac{q\psi(q^9)/\psi(q)}{1 - q\psi(q^9)/\psi(q)}.$$ (7.5.2)

Taking $q = e^{-\pi\sqrt{n}}$ in (7.5.1) and (7.5.2), we find the following formulas for $G(-e^{-3\pi\sqrt{n}})$ and $G(e^{-3\pi\sqrt{n}})$.

Theorem 7.5.1

(i) \(G(-e^{-3\pi\sqrt{n}}) = \frac{-e^{-\pi\sqrt{n}}\psi(-e^{-9\pi\sqrt{n}})/\psi(-e^{-\pi\sqrt{n}})}{1 + e^{-\pi\sqrt{n}}\psi(-e^{-9\pi\sqrt{n}})/\psi(-e^{-\pi\sqrt{n}})} \) (7.5.3)

and

(ii) \(G(e^{-3\pi\sqrt{n}}) = \frac{e^{-\pi\sqrt{n}}\psi(e^{-9\pi\sqrt{n}})/\psi(e^{-\pi\sqrt{n}})}{1 - e^{-\pi\sqrt{n}}\psi(e^{-9\pi\sqrt{n}})/\psi(e^{-\pi\sqrt{n}})} \). (7.5.4)

Combining with Theorem 7.4.1, a number of explicit evaluations follow. We give a couple of examples below.

Corollary 7.5.2

$$G(-e^{-3\pi}) = \frac{1 - \sqrt{2}2(\sqrt{3} - 1)}{2 + \sqrt{2}(\sqrt{3} - 1)}.$$ (7.5.5)

Proof: Putting $n = 1$ in Theorem 7.5.1 (i), and then using Corollary 7.4.2, we arrive at (7.5.5).

Corollary 7.5.3

$$G(-e^{-\pi\sqrt{5}}) = \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} - 3)}{4}.$$ (7.5.6)

Proof: In this case we put $n = 5/9$ in Theorem 7.5.1 (i), and then use Corollary 7.4.3, to obtain

$$G(-e^{-\pi\sqrt{5}}) = \frac{2 - (\sqrt{5} - \sqrt{3})(3 + \sqrt{5})}{4 + (\sqrt{5} - \sqrt{3})(3 + \sqrt{5})}.$$ (7.5.7)
Simplifying (7.5.7), we complete the proof.

Remark: For different proofs of Corollary 7.5.3, see [24] and [32].

7.6 Three eta-function Identities

In this section, we prove three eta-function identities which we will use in our next section.

Theorem 7.6.1 If

\[
P = \frac{\psi(q)}{q^{1/4}\psi(q^3)} \quad \text{and} \quad Q = \frac{\psi(q^5)}{q^{5/4}\psi(q^{15})},
\]

then

\[
(PQ)^2 + \frac{9}{(PQ)^2} = \left(\frac{Q}{P}\right)^3 + 5 \left(\frac{Q}{P}\right)^2 + 5 \left(\frac{P}{Q} - \frac{P}{Q} \right) - \left(\frac{P}{Q}\right)^3 \tag{7.6.1}
\]

Proof. We note from Entry 24(iii) [15, p. 39] that

\[
\psi(q) = \frac{f^2(-q^2)}{f(-q)}. \tag{7.6.2}
\]

Therefore \(P\) and \(Q\) can be reformulated as

\[
P = \frac{f(-q^3)f^2(-q^2)}{q^{1/4}f(-q)f^2(-q^6)} \quad \text{and} \quad Q = \frac{f(-q^{15})f^2(-q^{10})}{q^{5/4}f(-q^5)f^2(-q^{30})}.
\]

Now we set

\[
L_1 := \frac{f(-q)}{q^{1/12}f(-q^3)}, \quad L_2 := \frac{f(-q^5)}{q^{5/12}f(-q^{15})},
\]

\[
M_1 := \frac{f(-q^2)}{q^{1/6}f(-q^6)} \quad \text{and} \quad M_2 := \frac{f(-q^{10})}{q^{5/6}f(-q^{30})}, \tag{7.6.3}
\]

so that

\[
P = \frac{M_1^2}{L_1} \quad \text{and} \quad Q = \frac{M_2^2}{L_2}. \tag{7.6.4}
\]
Employing (7.6.3) in Entry 51 [17, p. 204], we obtain

\[(L_1 M_1)^2 + \frac{9}{(L_1 M_1)^2} = \left(\frac{L_1}{M_1}\right)^6 + \left(\frac{M_1}{L_1}\right)^6.\] \hfill (7.6.5)

Replacing \(q\) by \(q^5\) in the same entry, and then using (7.6.3), we find that

\[(L_2 M_2)^2 + \frac{9}{(L_2 M_2)^2} = \left(\frac{L_2}{M_2}\right)^6 + \left(\frac{M_2}{L_2}\right)^6.\] \hfill (7.6.6)

Using (7.6.4) we may rewrite (7.6.5) in the form

\[\frac{M_1^6}{P^2} + \frac{9P^2}{M_1^6} = \left(\frac{M_1}{P}\right)^6 + \left(\frac{P}{M_1}\right)^6.\] \hfill (7.6.7)

Thus we arrive at

\[M_1^{12} = \frac{P^8(P^4 - 9)}{P^4 - 1}.\] \hfill (7.6.8)

Similarly from (7.6.4) and (7.6.6), we deduce that

\[M_2^{12} = \frac{Q^8(Q^4 - 9)}{Q^4 - 1}.\] \hfill (7.6.9)

Employing (7.6.3) in (59.10) [17, p. 215], we find that

\[\left(\frac{L_2}{L_1}\right)^3 + \left(\frac{M_2}{M_1}\right)^3 = \left(\frac{L_2 M_2}{L_1 M_1}\right)^2 - \left(\frac{L_2 M_2}{L_1 M_1}\right).\] \hfill (7.6.10)

Invoking (7.6.4) in (7.6.10), and then simplifying, we deduce that

\[\left(\frac{M_2}{M_1}\right)^3 = \frac{1 + P/Q}{\left(\frac{P}{Q}\right)^2 - \left(\frac{P}{Q}\right)^3}.\] \hfill (7.6.11)

From (7.6.8), (7.6.9), and (7.6.11), we find that

\[\frac{Q^8(Q^4 - 9)(P^4 - 1)}{P^8(P^4 - 9)(Q^4 - 1)} = \left[\frac{1 + P/Q}{\left(\frac{P}{Q}\right)^2 - \left(\frac{P}{Q}\right)^3}\right]^4.\] \hfill (7.6.12)
Setting $x := P/Q$ and $y := PQ$, and then simplifying, we deduce that

$$\frac{(y^2 - 9x^2)(x^2y^2 - 1)}{(y^2 - x^2)(x^2y^2 - 9)} = \left(\frac{1 + x}{1 - x}\right)^4. \tag{7.6.13}$$

Further simplifications give

$$(1 + x^2)(9x^3 - y^2 - 5xy^2 - 5x^2y^2 + 5x^4y^2 - 5x^5y^2 + x^6y^2 + x^3y^4) = 0. \tag{7.6.14}$$

Since the first factor never vanishes, we deduce that

$$9x^3 - y^2 - 5xy^2 - 5x^2y^2 + 5x^4y^2 - 5x^5y^2 + x^6y^2 + x^3y^4 = 0. \tag{7.6.15}$$

Thus,

$$y^2 + \frac{9}{y^2} = \frac{1}{x^3} + \frac{5}{x^2} + 5x^2 + 5\left(\frac{1}{x} - x\right) - x^3, \tag{7.6.16}$$

which is readily seen to be equivalent to (7.6.1).

Remark Since by Entry 24(iii) [15, p. 39],

$$\phi(-q) = \frac{f^2(-q)}{f(-q^2)},$$

proceeding as above, we see that, if

$$P = \frac{\phi(-q)}{\phi(-q^3)} \quad \text{and} \quad Q = \frac{\phi(-q^5)}{\phi(-q^{15})},$$

then (7.6.1) holds. Replacing q by $-q$, we see that the same identity holds if

$$P = \frac{\phi(q)}{\phi(q^3)} \quad \text{and} \quad Q = \frac{\phi(q^5)}{\phi(q^{15})}.$$
Theorem 7.6.2 If

\[P = \frac{f(-q)f(-q^7)}{q^{2/3}f(-q^3)f(-q^{21})} \quad \text{and} \quad Q = \frac{f(-q^2)f(-q^{14})}{q^{4/3}f(-q^5)f(-q^{42})}, \]

then

\[\left(\frac{P}{Q} \right)^3 + \left(\frac{Q}{P} \right)^3 = 10 + PQ + \frac{9}{PQ} - 2 \left(25 + 4PQ + \frac{36}{PQ} \right)^{1/2}. \quad (7.6.17) \]

Proof: Let

\[R = \frac{f(q)f(q^7)}{q^{2/3}f(q^3)f(q^{21})}. \]

By Entries 12(i) and (iii) in Chapter 17 of [15, p. 124] we find that

\[R = \sqrt{mm'} \left(\frac{\alpha\gamma(1-\alpha)(1-\gamma)}{\beta\delta(1-\beta)(1-\delta)} \right)^{1/24} \quad (7.6.18) \]

and

\[Q = \sqrt{mm'} \left(\frac{\alpha\gamma(1-\alpha)(1-\gamma)}{\beta\delta(1-\beta)(1-\delta)} \right)^{1/12}, \quad (7.6.19) \]

where \(\beta, \gamma, \) and \(\delta \) have degrees 3, 7, 21, respectively, over \(\alpha \) and \(m \) and \(m' \) are the multipliers connecting \(\alpha, \beta \) and \(\gamma, \delta, \) respectively.

From (7.6.18) and (7.6.19), we readily see that

\[\frac{Q}{R} = \left(\frac{\alpha\gamma(1-\alpha)(1-\gamma)}{\beta\delta(1-\beta)(1-\delta)} \right)^{1/24} \quad (7.6.20) \]

and

\[\frac{R^2}{Q} = \sqrt{mm'}. \quad (7.6.21) \]

Now by Entries 13(v) and 13(vi) in Chapter 20 of [15, p. 384], we note the "mixed" modular
7.6. THREE ETA-FUNCTION IDENTITIES

equations

\[
\left(\frac{\beta \delta}{\alpha \gamma}\right)^{1/4} + \left(\frac{(1 - \beta)(1 - \delta)}{(1 - \alpha)(1 - \gamma)}\right)^{1/4} + \left(\frac{\beta \delta(1 - \beta)(1 - \delta)}{\alpha \gamma(1 - \alpha)(1 - \gamma)}\right)^{1/4} - 2 \left(\frac{\beta \delta(1 - \beta)(1 - \delta)}{\alpha \gamma(1 - \alpha)(1 - \gamma)}\right)^{1/8} \times \left\{ 1 + \left(\frac{\beta \delta}{\alpha \gamma}\right)^{1/8} + \left(\frac{(1 - \beta)(1 - \delta)}{(1 - \alpha)(1 - \gamma)}\right)^{1/8} \right\} = m m', \quad (7.6.22)
\]

and

\[
\left(\frac{\alpha \gamma}{\beta \delta}\right)^{1/4} + \left(\frac{(1 - \alpha)(1 - \gamma)}{(1 - \beta)(1 - \delta)}\right)^{1/4} + \left(\frac{\alpha \gamma(1 - \alpha)(1 - \gamma)}{\beta \delta(1 - \beta)(1 - \delta)}\right)^{1/4} - 2 \left(\frac{\alpha \gamma(1 - \alpha)(1 - \gamma)}{\beta \delta(1 - \beta)(1 - \delta)}\right)^{1/8} \times \left\{ 1 + \left(\frac{\alpha \gamma}{\beta \delta}\right)^{1/8} + \left(\frac{(1 - \alpha)(1 - \gamma)}{(1 - \beta)(1 - \delta)}\right)^{1/8} \right\} = \frac{9}{m m'}, \quad (7.6.23)
\]

respectively.

For simplicity, we set

\[
x := \left(\frac{\beta \delta}{\alpha \gamma}\right)^{1/8} + \left(\frac{(1 - \beta)(1 - \delta)}{(1 - \alpha)(1 - \gamma)}\right)^{1/8} \quad \text{and} \quad y := \left(\frac{\beta \delta(1 - \beta)(1 - \delta)}{\alpha \gamma(1 - \alpha)(1 - \gamma)}\right)^{1/8},
\]

so that

\[
\frac{R^3}{Q^3} = y. \quad (7.6.24)
\]

Then from (7.6.22), we find that

\[
x = y \pm \left(4y + \frac{m m'}{y}\right)^{1/2}. \quad (7.6.25)
\]

Also, from (7.6.23), we find the reciprocal equation of (7.6.25) as

\[
\frac{x}{y} = \frac{1}{y} \pm \left(\frac{4}{y} + \frac{9}{m m'}\right)^{1/2}. \quad (7.6.26)
\]

Combining (7.6.25) and (7.6.26), we obtain

\[
y \pm \left(4y + \frac{m m'}{y}\right)^{1/2} = 1 \pm y \left(\frac{4}{y} + \frac{9}{m m'}\right)^{1/2}. \quad (7.6.27)
\]
Employing (7.6.20), (7.6.21), and (7.6.24) in (7.6.27), we find that

\[
\frac{R^3}{Q^3} \pm \left(\frac{4R^3}{Q^3} + \frac{R^4}{Q^2} \right)^{1/2} = 1 \pm \frac{R^3}{Q^3} \left(\frac{4Q^3}{R^3} + \frac{9Q^2}{R^4} \right)^{1/2}. \tag{7.6.28}
\]

We rewrite (7.6.28) as

\[
R^3 - Q^3 = \pm R^3 \left(\frac{4Q^3}{R^3} + \frac{9Q^2}{R^4} \right)^{1/2} \mp Q^3 \left(\frac{4R^3}{Q^3} + \frac{R^4}{Q^2} \right)^{1/2}. \tag{7.6.29}
\]

Squaring both sides of (7.6.29), and then simplifying, we arrive at

\[
R^6 + Q^6 = 10R^3Q^3 + 9R^2Q^2 + R^4Q^4 - 2R^3Q^3 \left(25 + \frac{4RQ}{RQ} + \frac{36}{RQ} \right)^{1/2}. \tag{7.6.30}
\]

Dividing both sides of (7.6.30) by \(R^3Q^3\), we find that

\[
\left(\frac{R}{Q} \right)^3 + \left(\frac{Q}{R} \right)^3 = 10 + \frac{RQ}{RQ} + \frac{9}{RQ} - 2 \left(25 + \frac{4RQ}{RQ} + \frac{36}{RQ} \right)^{1/2}. \tag{7.6.31}
\]

If we replace \(q\) by \(-q\) then \(RQ\) transforms to \(PQ\) and \((R/Q)^3\) transforms to \((P/Q)^3\). Thus (7.6.31) is transformed to (7.6.17), which completes the proof of the theorem.

Theorem 7.6.3 If

\[
P = \frac{\psi(q)}{q^{1/4}\psi(q^3)} \quad \text{and} \quad Q = \frac{\psi(q^7)}{q^{7/4}\psi(q^{21})},
\]

then

\[
k_1(PQ)^3 + k_2(PQ) = k_3(PQ)^2 + k_4 \left(\frac{P}{Q} \right)^2 - k_5, \tag{7.6.32}
\]

where

\[
k_1 = \left(\frac{P}{Q} \right)^8 - 1, \quad k_2 = 14P^4 \left(\frac{P}{Q} \right)^4 - 1, \quad k_3 = P^4(7 - P^4),
\]

\[
k_4 = 7P^4(P^4 - 3), \quad \text{and} \quad k_5 = 27 \left(\frac{P}{Q} \right)^4 - 7P^4 \left(3 + 3 \left(\frac{P}{Q} \right)^4 - P^4 \right). \tag{7.6.33}
\]
7.6. THREE ETA-FUNCTION IDENTITIES

Proof. Proceeding as in Theorem 7.6.1, if we set

\[L_1 := \frac{f(-q)}{q^{1/12} f(-q^{3})}, \quad L_2 := \frac{f(-q^7)}{q^{7/12} f(-q^{21})}, \]

\[M_1 := \frac{f(-q^2)}{q^{1/8} f(-q^{6})}, \quad \text{and} \quad M_2 := \frac{f(-q^{14})}{q^{7/8} f(-q^{42})}, \]

(7.6.34)

so that

\[P = \frac{M_1^2}{L_1} \quad \text{and} \quad Q = \frac{M_2^2}{L_2}, \]

(7.6.35)

we find that

\[M_1^{12} = \frac{P^8 (P^4 - 9)}{P^4 - 1}, \]

(7.6.36)

and

\[M_2^{12} = \frac{Q^8 (Q^4 - 9)}{Q^4 - 1}. \]

(7.6.37)

Employing (7.6.34) and (7.6.35) in Theorem 7.6.2, we deduce that

\[\left(\frac{M_1 M_2}{PQ} \right)^3 + \left(\frac{PQ}{M_1 M_2} \right)^3 = 10 + \frac{(M_1 M_2)^3}{PQ} + \frac{9PQ}{(M_1 M_2)^3} - 2 \left(25 + \frac{4(M_1 M_2)^3}{PQ} + \frac{36PQ}{(M_1 M_2)^3} \right)^{1/2}. \]

(7.6.38)

Simplifying (7.6.38), we find that

\[ax + \frac{b}{x} + 10 = 2 \left(25 + \frac{4x}{PQ} + \frac{36PQ}{x} \right)^{1/2}, \]

(7.6.39)

where

\[x = (M_1 M_2)^3, \quad a = \frac{1}{PQ} - \frac{1}{(PQ)^3}, \quad \text{and} \quad b = 9PQ - (PQ)^3. \]

(7.6.40)

Squaring both sides of (7.6.39), and then simplifying, we deduce that

\[a^2 k + b^2 + 2abx^2 = x \left(c + dx^2 \right), \]

(7.6.41)
where

\[k = x^2, \quad c = 144PQ - 20b \quad \text{and} \quad d = \frac{16}{PQ} - 20a. \]

(7.6.42)

Squaring both sides of (7.6.41), and then rearranging the terms, we arrive at

\[a^4k^2 + b^4 + 6a^2b^2k - 2cdk = x^2\left(c^2 + d^2k - 4a^3bk - 4ab^3\right). \]

(7.6.43)

Squaring both sides of (7.6.43), and then transferring to one side, we find that

\[\left(a^4k^2 + b^4 + 6a^2b^2k - 2cdk\right)^2 - k\left(c^2 + d^2k - 4a^3bk - 4ab^3\right)^2 = 0. \]

(7.6.44)

From (7.6.36), (7.6.37), (7.6.40), and (7.6.42), we note that

\[k = \frac{(PQ)^8(P^4 - 9)(Q^4 - 9)}{(P^4 - 1)(Q^4 - 1)}. \]

(7.6.45)

Substituting the expressions for \(a, b, c, d,\) and \(k\) from (7.6.40), (7.6.42), and (7.6.45) in (7.6.44), and then factoring by Mathematica, we deduce that

\[y^{10}(y^4 - 9)^4A(y, z)B(y, z) = 0, \]

(7.6.46)

where \(y = PQ,\) \(z = P/Q,\)

\[A(y, z) = -27z^4 + 21y^2z^2 - 21y^2z^4 + 21y^2z^6 - y^3 - 14y^3z^2 + 14y^3z^6 + y^3z^8 + 7y^4z^2 - 7y^4z^4 + 7y^4z^6 - y^6z^4, \]

and

\[B(y, z) = 27z^4 - 21y^2z^2 + 21y^2z^4 - 21y^2z^6 - y^3 - 14y^3z^2 + 14y^3z^6 + y^3z^8 - 7y^4z^2 + 7y^4z^4 - 7y^4z^6 + y^6z^4. \]

It can be seen that the first three factors in (7.6.46) are not identically zero. Thus, we deduce that

\[B(y, z) = 0. \]

(7.6.47)
7.7. RELATIONS OF $G(q)$ WITH $G(q^5)$ AND $G(q^7)$

It is now easy to see that (7.6.32) and (7.6.46) are equivalent.

Remark: Since by Entry 24(iii) [15, p. 39]

$$\phi(-q) = \frac{f^2(-q)}{f(-q^2)},$$

proceeding as above, it can be seen that, if

$$P = \frac{\phi(-q)}{\phi(-q^3)} \quad \text{and} \quad Q = \frac{\phi(-q^7)}{\phi(-q^{21})},$$

then (7.6.32) holds. Replacing q by $-q$, we also see that the same identity holds if

$$P = \frac{\phi(q)}{\phi(q^3)} \quad \text{and} \quad Q = \frac{\phi(q^7)}{\phi(q^{21})}.$$

7.7 Relations of $G(q)$ with $G(q^5)$ and $G(q^7)$

In this section we find relations between $G(q)$ and the two continued fractions $G(q^5)$ and $G(q^7)$.

Theorem 7.7.1 Let for $|q| < 1$, $v = G(q)$ and $w = G(q^5)$. Then

$$v^6 - vw + 5vw(v^3 + w^3)(1 - 2vw) + w^6 = v^2w^2(16v^3w^3 - 20v^2w^2 + 20vw - 5). \quad (7.7.1)$$

Proof. From (7.2.3), we note that

$$P^4 = 1 + \frac{1}{v^3} \quad \text{and} \quad Q^4 = 1 + \frac{1}{w^3}, \quad (7.7.2)$$

where

$$P = \frac{\psi(q)}{q^{1/4}\psi(q^3)} \quad \text{and} \quad Q = \frac{\psi(q^5)}{q^{5/4}\psi(q^{15})}.$$
From the identity in Theorem 7.6.1, we see that

\[(PQ)^2 + \frac{9}{(PQ)^2} - 5 \left(\frac{P}{Q} \right)^2 - 5 \left(\frac{Q}{P} \right)^2 = \frac{P}{Q} \left(\left(\frac{Q}{P} \right)^4 + 5 \left(\frac{Q}{P} \right)^2 - \left(\frac{P}{Q} \right)^2 - 5 \right). \tag{7.7.3} \]

Squaring both sides of (7.7.3), and then simplifying, we deduce that

\[\begin{align*}
(PQ)^4 + \frac{81}{(PQ)^4} + 15 \left(\frac{Q}{P} \right)^4 + 15 \left(\frac{P}{Q} \right)^4 + 120 - 10Q^4 - 10P^4 - \frac{90}{P^4} - \frac{90}{Q^4}
\end{align*}\]

\[= \left(\frac{P}{Q} \right)^2 \left(\left(\frac{Q}{P} \right)^8 + \left(\frac{Q}{P} \right)^4 + 15 \left(\frac{Q}{P} \right)^4 + 15 \right). \tag{7.7.4} \]

Squaring both sides of (7.7.4), and then using (7.7.2), we can deduce that

\[G(v, w)H(v, w) = 0, \tag{7.7.5} \]

where

\[G(v, w) = v^6 - vw + 5v^4w + 5v^2w^2 - 10v^5w^2 - 20v^3w^3 + 5vw^4 + 20v^4w^4 - 10v^2w^6 - 16v^5w^5 + w^6, \]

and

\[H(v, w) = v^{12} + v^7w - 5v^{10}w + v^2w^2 - 10v^5w^2 + 20v^8w^2 + 10v^{11}w^2 + 5v^3w^3 - 35v^6w^3 + 10v^9w^3 + 5v^4w^4 - 5v^7w^4 + 80v^{10}w^4 - 10v^2w^5 + 110v^5w^5 + 10v^8w^5 + 16v^{11}w^5 - 35v^3w^6 + 386v^6w^6 + 280v^9w^6 + vw^7 - 5v^4w^7 + 440v^7w^7 + 320v^{10}w^7 + 20v^2w^8 + 10v^5w^8 + 80v^8w^8 + 10v^3w^9 + 280v^6w^9 + 320v^9w^9 - 5vw^10 + 80v^4w^10 + 320v^7w^10 + 256v^{10}w^10 + 1010v^2w^{11} + 16v^5w^{11} + w^{12}. \]

From the definitions of \(v\) and \(w\), we note that \(v = O(q^{1/3})\) and \(w = O(q^{5/3})\) as \(q\) tends to 0. So the first factor in (7.7.5) vanishes for \(q\) sufficiently small. Hence by the identity theorem,

\[G(v, w) \text{ vanishes for } |q| < 1. \]

Thus,

\[v^6 - vw + 5v^4w + 5v^2w^2 - 10v^5w^2 - 20v^3w^3 + 5vw^4 + 20v^4w^4 - 10v^2w^6 - 16v^5w^5 + w^6 = 0, \tag{7.7.6} \]

which is equivalent to (7.7.1). Thus we complete the proof.
7.7. RELATIONS OF $G(q)$ WITH $G(q^5)$ AND $G(q^7)$

Theorem 7.7.2 Let for $|q| < 1$, $v = G(q)$ and $w = G(q^7)$. Then

$$v^8 - vw - 56v^3w^3(v^2 + w^2) + 7vw(v^3 + w^3)(1 - 8v^3w^3) + 28v^2w^2(v^4 + w^4) = v^4w^4(21 - 64v^3w^3).$$

(7.7.7)

Proof. From (7.2.3), we find that

$$P^4 = 1 + \frac{1}{v^3} \quad \text{and} \quad Q^4 = 1 + \frac{1}{w^3},$$

(7.7.8)

where

$$P = \frac{\psi(q)}{q^{1/4}\psi(q^3)} \quad \text{and} \quad Q = \frac{\psi(q^7)}{q^{7/4}\psi(q^{21})}.$$

Now, squaring both sides of the identity in Theorem 7.6.3, we find that

$$(k_1^2 + k_1^2(PQ)^4 + 2k_3k_5)(PQ)^2 + 2k_4k_5 \left(\frac{P}{Q}\right)^2 = k_6,$$

(7.7.9)

where $k_1 - k_5$ are as given in Theorem 7.6.3, and

$$k_6 = k_3^2(PQ)^4 + k_4^2 \left(\frac{P}{Q}\right)^4 + k_5^2 + 2k_3k_4P^4 - 2k_1k_2(PQ)^4.$$

Squaring both sides of (7.7.9), and then using (7.7.8), we deduce that

$$(1 + v^3)^3 A(v, w) B(v, w) = 0,$$

(7.7.10)

where,

$$A(v, w) = v^8 - vw + 7v^4w + 28v^6w^2 - 56v^5w^3 + 7vw^4 + 21v^4w^4 - 56v^7w^4 - 56v^3w^5 + 28v^2w^6 - 56v^4w^7 - 64v^7w^7 + w^7,$$

and
\[B(v, w) = v^{16} + v^9 w - 7v^{12} w + v^2 w^2 - 14v^5 w^2 + 49v^8 w^2 - 28v^{14} w^2 + 28v^7 w^3 - 196v^{10} w^3 - 112v^{13} w^3 - 56v^6 w^4 + 385v^9 w^4 + 763v^{12} w^4 + 56v^{15} w^4 - 14v^2 w^5 + 56v^5 w^5 + 406v^8 w^5 + 840v^{11} w^5 - 56v^4 w^6 + 196v^7 w^6 + 2604v^{10} w^6 + 1568v^{13} w^6 + 28v^3 w^7 + 196v^6 w^7 - 1960v^9 w^7 - 3080v^{12} w^7 + 64v^{15} w^7 + 49v^2 w^8 + 406v^5 w^8 - 4920v^8 w^8 - 3248v^{11} w^8 + 3136v^{14} w^8 + vw^9 + 385v^4 w^9 - 1960v^7 w^9 - 1568v^{10} w^9 + 1792v^{13} w^9 - 196v^3 w^{10} + 2604v^6 w^{10} - 1568v^9 w^{10} - 3584v^{12} w^{10} + 840v^5 w^{11} - 3248v^8 w^{10} + 3584v^{10} w^{11} + 7168v^{13} w^{11} - 7v^2 w^{12} + 763v^4 w^{12} - 3080v^7 w^{12} - 3584v^{10} w^{12} - 112v^3 w^{13} + 1568v^6 w^{13} + 1792v^9 w^{13} - 28v^2 w^{14} + 3136v^8 w^{14} + 7168v^{11} w^{14} + 4096v^{14} w^{14} + 56v^4 w^{15} + 64v^7 w^{15} + w^{16}. \]

From the definitions of \(v \) and \(w \), we see that \(v = O(q^{1/3}) \) and \(w = O(q^{7/3}) \) as \(q \) tends to 0. Hence the second factor of (7.7.10) vanishes for \(q \) sufficiently small. By the identity theorem that factor vanishes for \(|q| < 1 \). Thus we arrive at

\[v^8 - vw + 7v^4 w + 28v^6 w^2 - 56v^5 w^3 + 7vw^4 + 21v^4 w^4 - 56v^7 w^4 - 56v^3 w^5 + 28v^2 w^6 - 56v^4 w^7 - 64v^7 w^7 + w^7 = 0, \]

which is equivalent to (7.7.7).