Chapter-3

HALF-SPACE PROBLEMS IN POTENTIAL THEORY

3.1 Representation of Harmonic Function as a Simple and Double Layer Potentials

A harmonic function ϕ may be represented throughout the interior domain B_i by Green's formula. On the other hand this may also be represented by a simple layer potential or by a double layer potential. To bring out the connection between these different representations, following Jaswon and Symm (1977), we introduce an arbitrary regular exterior harmonic function f into the exterior domain B_e, such that it satisfies the expression (2.3.20) i.e.,

$$\int g(P,q) f(q) dq - \int g(P,q) f'(q) dq = 0, \quad P \in B_i. \quad (3.1.1)$$

Superposition of this on Green's formula (2.3.15) for interior domain, i.e., on

$$\int g(P,q) \phi(q) dq - \int g(P,q) \phi'(q) dq = 4\pi \phi(P), \quad P \in B_i, \quad (3.1.2)$$

yields the more general continuation formula

$$\int g(P,q) (\phi(q) - f(q)) dq - \int g(P,q) (\phi'(q) + f'(q)) dq = 4\pi \phi(P), \quad P \in B_i. \quad (3.1.3)$$

Now, we consider two distinct possibilities for f.

The first is $f = \phi$ over ∂B, providing the representation

$$4\pi \phi(P) = - \int g(P,q) [\phi(q) + f'(q)] dq, \quad P \in B_i \quad (3.1.4)$$
which is similar to the simple layer potential generated by the source density

\[\sigma = -\frac{1}{4\pi}(\phi_i + f_e'). \]

(3.1.5)

This possibility hinges upon the existence of a unique regular \(f \) in \(B_e \) satisfying \(f = \phi \) over \(\partial B \), as it is in fact ensured by the exterior Dirichlet existence theorem. The second possibility is \(f_e' = -\phi_i' \) over \(\partial B \), providing the representation

\[4\pi\phi(P) = \int_{\partial B} g(P,q)\left[\phi(q) - f(q)\right]dq, \quad P \in B_i \]

(3.1.6)

which may be identified as the double layer potential generated by source density

\[\mu = \frac{1}{4\pi}(\phi - f). \]

(3.1.7)

This possibility hinges upon the existence of a unique regular \(f \) in \(B_e \) satisfying \(f_e' = -\phi_i' \) over \(\partial B \), as it is in fact ensured by the exterior Neumann existence theorem.

In the case of a harmonic function \(\phi \) vanishing at infinity at least in \(O(r^{-n}) \), \(n \geq 1 \), the above statements remain valid as these can be derived as a special case of close domain exterior as well as interior problem following article (2.3.5). So, analogous to statements (3.1.4) and (3.1.6), considering \(f = \phi \) and \(f_e' = -\phi_i' \) respectively, the expression for exterior half-space problem will be

\[4\pi\phi(P) = -\int_{\partial B} g(P,q)\left[\phi_e'(q) + f_e'(q)\right]dq, \quad P \in B_e \]

(3.1.8)

which is similar to the simple layer potential generated by the source density

\[\sigma = -\frac{1}{4\pi}(f_e' + \phi_e'). \]

(3.1.9)
and

\[4\pi\phi(P) = \int_{\partial B} g(P,q)\left[f(q) - \phi(q)\right]dq, \quad P \in B_e \] (3.1.10)

which may be identified as the double layer potential generated by source density

\[\mu = \frac{1}{4\pi}(f - \phi). \] (3.1.11)

The representation (3.1.8) remains valid at \(\partial B \), so yielding the boundary relation

\[\int_{\partial B} g(p,q)\sigma(q)dq = \phi(p), \quad p \in \partial B \] (3.1.12)

where, \(\sigma \) is given by (3.1.9). This may be regarded as an integral equation in \(\sigma \) in terms of \(\phi \), to which a unique solution exists since \(\phi \) and \(f \) uniquely exist. Similarly the representation (3.1.10) jumps by \(-2\pi\mu(p)\) at \(\partial B \), so yielding the boundary relation

\[\int_{\partial B} g(p,q)\mu(q)dq + 2\pi\mu(p) = \phi(p), \quad p \in \partial B. \] (3.1.13)

where \(\mu \) is given by (3.1.11). This may be regarded as integral equation for \(\mu \) in terms of \(\phi \), to which a unique solution exists since \(f \) uniquely exists.

3.2 Half-space Problems in Simple and Double Layer Potentials

For a regular harmonic function \(\phi \) defined in an exterior domain \(B_e \) bounded at the interior by a closed boundary \(\partial B (= S + S_w, \text{Fig. 2.3.4}) \), we may write \(\phi \) following (3.1.8) and (3.1.10) as

\[\phi(P) = \int_{S} g(P,q)\sigma dq + \int_{S_w} g(P,q)\sigma dq, \quad P \in B_e \] (3.2.1)
where,
\[\sigma = -\frac{1}{4\pi} (f' + \phi_e') = O(\phi_e) \]

and
\[\phi(P) = \int_{S} g(P, q) \sigma dq + \int_{S^0} g(P, q) \epsilon \mu dq, \quad P \in B_e \]

(3.2.2)

where,
\[\mu = \frac{1}{4\pi} (f - \phi) = O(\phi). \]

Following the same analysis as carried out in (2.3.26) for \(P \in B_e \) the above formula yields
\[\phi(P) = \int_{S} g(P, q) \sigma dq, \quad P \in B_e \]

(3.2.3)

and
\[\phi(P) = \int_{S} g(P, q) \epsilon \mu dq, \quad P \in B_e. \]

(3.2.4)

The relation (3.2.3) is valid for the boundary \(S \), so yielding the boundary relation as
\[\phi(p) = \int_{S} g(p, q) \sigma dq, \quad p \in S. \]

(3.2.5)

For \(\phi \) given on \(S \) the expression (3.2.5) may be regarded as integral equation in \(\sigma \). This has unique \(\sigma \) as shown in (3.1.6). Similarly the representation (3.2.4) jumps by \(-2\pi \mu(p)\) at \(S \), so yielding the boundary relation
\[\phi(p) = \int_{S} g(p, q) \epsilon \mu dq + 2\pi \mu(p), \quad p \in S. \]

(3.2.6)

For given \(\phi \), this may also be regarded as integral equation in \(\mu \) to which unique solution exists as shown in (3.1.7) since \(f \) exists uniquely.