CONTENTS

1. Introduction 1-6
 1.1. Fungal infections
 1.2. Antifungal Chemotherapy
 1.3. Plants as the Alternate Source of Antifungal Agents
 1.4. Rationale for Plants Selection

2. Aims and Objectives 7

3. Review of Literature 8-38
 3.1. Fungal Infection: A Renewed Threat
 3.1.1. Superficial Infections
 3.1.2. Subcutaneous Fungal Infections
 3.1.3. Systemic Fungal Infections
 3.2. Fungal Pathogens: An Emerging Problem Agent
 3.2.1. Aspergillus fumigatus: Ecological Significance
 3.2.2. A. fumigatus as a human pathogen
 3.3. Biochemical targets for antifungal chemotherapy
 3.4. Conventional antifungal drugs and their clinical limitations
 3.4.1. Polyenes
 3.4.2. Azoles
 3.4.3. Echinocandins
 3.4.4. Nucleoside analogues
 3.4.5. Other antifungal agents
 3.4.6. Limitations of conventional approaches
 3.5. Phytopharmaceutical approaches and their significance
 3.5.1. Historical perspectives
 3.5.2. Current status of herbal medicine
 3.5.3. Market potential of herbal drugs
3.5.4. Traditional herbal medicine in medical health practices

3.6. Re-emergence of antifungal herbs as the treatment of choice

3.7. Antifungal compounds from plants
 3.7.1. Terpenoids having antifungal activity
 3.7.2. Nitrogenous compounds having antifungal activity
 3.7.3. Aromatic compounds having antifungal activity
 3.7.4. Aliphatic compounds having antifungal activity

3.8. **Selection of Plants Species for Screening**

4. **Materials and Methods**

 4.1. Plant material
 4.2. Sample preparation and extraction of crude extracts
 4.3. Pathogens
 4.3.1. Culture of pathogens
 4.4. Antimycotic activity
 4.4.1. Microbroth-dilution assay
 4.4.2. Disc-diffusion assay
 4.4.3. Spore-germination-inhibition assay
 4.5. Qualitative phytochemical analysis
 4.6. Chromatographic Methods
 4.6.1. Equilibration of Chromatographic Chamber
 4.6.2. Thin layer chromatography (TLC)
 4.6.3. Development of Chromatogram
 4.6.4. Column Chromatography
 4.7. Spectroscopic Techniques
 4.7.1. One Dimensional NMR
 4.7.1.1. 1D-Proton NMR (1H-NMR)
 4.7.1.2. 1D-Carbon NMR (13C-NMR)
 4.7.2. Two dimensional NMR (2D-NMR)
 4.8. Gas Chromatography/Mass Spectrometry (GC/MS)
 4.8.1. Mass Spectrometry (MS)
 4.9. Other Spectroscopic methods
 4.9.1. Fourier transforms infrared spectroscopy
 4.9.2. Ultraviolet-visible spectroscopy
4.10. Study of physical/biochemical properties

4.11. Toxicity studies
 4.11.1. Acute toxicity
 4.11.2. Haemolytic assay
 4.11.3. Single cell gel electrophoresis assay (Comet assay)

5. Results and Discussion

5.1. Preliminary antifungal, phytochemical and toxicological screening
5.2. Isolation and purification of antifungal compound from Justicia adhatoda
5.3. Structure elucidation and antifungal potential of purified compound
5.4. Toxicological and biochemical characterization of identified compound
5.5. Analysis toward innovative herbal antibacterial drugs
5.6. Investigation of antioxidant potential of plants extracts

6. Summary and Conclusion

7. References