REFERENCES
REFERENCES

Barr, W. A. (1963): Pattern of ovarian activity perspective In 'Endocrinology' (J.N. Barrington & C.B. Jorgenson)

Belsare, D. K. (1962): Seasonal changes in the ovary of *Ophiocephallus punctatus* (Bloch.)

Billard, R., P. Reinaud., M. G. Hollebecq., B. Breton (1984): Advancement and synchronization of spawning in *Salmo gairdneri* and *Sital*
trutta following administration of LHRHa—combined or not with pimozide. *Aquaculture* 43: pp. 57-66.

Bugnon, C. L. (1960): Etude de la repartition des type cellulares de I adenohypophysis de quelous Teleasteins de mar

157

Dhabe, Priyakumari S. (2002): Comparative study on application of pituitary extract and ovaprim in Indian major carps Ph.D. Thesis Dr. B.A.M.University, India

Erdouan, Orhan., Halil Ubrahim Haluloulu., and Abdulkadir

flavescens *J. Fish Res. Bd. Can.* 32: pp. 2214-2221.

Gallager, S.M. & Mann R. (1986): Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs. Aquaculture; 56: pp 105 121

Jadhav, Ujjawala A. (2002): A study on correlation between structure of pituitary gland and seasonal changes in the gonads of fresh water fish *Ph.D.* *Thesis* Dr. B.A.M.University India

Levenstein, I. (1939): The cytologie of pituitary gland of two varieties goldfish (*Carassius auratus*) with some refrences to variable factors in the
gland, which may possible be related to the different morphological types
Zoologica. (24): pp 47-60

Lin, H. R., G. Van der Kraak, X. J. Zhou, J. Y. Liang, R. E. Peter,
NEt]-luteinizing hormone-releasing hormone (sGnRHA) and [d-Ala6, Pro9
NEt]-luteinizing hormone-releasing hormone(LHRH-A), in combination with
pimozide or domperidone, on gonadotropin release and ovulation in the Chinese

Stimulation of gonadotropin secretion and ovulation in common carp by an
analogue of salmon GnRH and domperidone. Proceedings of the 1st Congress
of the Asia Oceania Society of Comparative Endocrinology: pp. 155-156.

Livini, N. (1971): Ovarian histochemistry of the fishes Cyprinus
carpio, Mugil capito and Tilapia aurea (Teleosted) Histochem J. (3): pp 405-
414.

of Lakes of Karelia (Lake Onezhskoye basin). Edited by V. S. Sidorov and E. I.
Lizenko. Petrozavodsk: Karelski filial AN SSSR. In Biochemistry of
Freshwater Fishes of Karelia: pp 15–21.

Uttar Pradesh, Bihar and Maharashtra Barrackpore, Bulletin of Central Inland. Fisheries Research Institute 7: (mimeo).

Moitra, S. K. and Sarkar S. K. (1976): Seasonal variations in the histology of pitutary gland of Cirrhina mrigala (Ham.) an Indian freshwater

Nandeesha, M. C., G. Bhadraswamy, J. G. Patil., T. J. Varghese.,

Neasome, G. E. and Leduc G. (1975): Seasonal changes in fat content in *Perca*

Peter R.E., H.R. Lin., and G. Van Der Kraak (1988a) Induced ovulation and spawning of cultured freshwater fish in China: Advances in

Polakof, Sergio., Miguez, Jesus M. Moon., Thomas W., and Soengas, Jose L. (2007): Evidence for the presence of a glucosensor in

Potts, H. S. (1942): The anatomy and morphology of the hypophysis of several species of ova-viviparous *poecillids* *Zoologica New York* 27: pp 85-93.

Ragde, Vinod R. (2000): An observation on gonadal axis in relationship with spawning activity in Indian major carps *Ph.D. Thesis* Dr. B.A.M.University India

Ravan, C. P. (1961): Oogenesis, the storage of developmental information’s (Pregamon press, London.)

Robertson, O. H. and Wexler B. C. (1959): Hyperplasia of the adrenal cortical tissue in pacific Salmon (Genus Oncorhynchus) and rainbow trout (Salmon gairdnerii) accompanying sexual maturation and spawning Endocrinology. 65: pp. 225-238.

Saksena, D. N. and Saxena M. (1999): Events of biochemical intergration during the reproductive cycle found in murrel, Channa orientalis

Singh, B. K. (2001): Ovaprim as an inducing agent in Silver carps breeding. In first Indian Fisheries Science Congress, held at Panjab University Chandigarh Abstract No. 4

Srivastava, Shivaji (1979): Seasonal variations in the cyanophils of the pituitary gland in correlation with reproductive cycle of *Channa stratus* *Z. Mikrask. Anta. Forsch*.

FOA Rome ADCP/REP/81/16/: pp. 1-81.

Sundararaj, B. I. and Goswami S. V. (1966a): Temporal effects of
ovarian lutheinozing hormones and deoxycorsterone acetate on maturation and
ovulation of oocytes of the catfish, *Heteropneustes fossilis* (Bloch) an in vivo and

Sundararaj, B. I. and Goswami S. V. (1968): Effect of estrogen,
progesterone and testosterone on the pituitary and ovary of catfish

Suzuki, T. and Suyama M. (1985): Characterization of phosvitin and
phosphopetide of rainbow trout eggs. *Bull. Japn. Soc. Sci. Fish. (51)*: pp 1287-
1291.

and immunolocalization of a vitellin-like protein from the *Crassostrea gigas.*
Mar. Biol. 113: pp 239 245

reproductive 1963-1970 for the family Salmonidea. Sub families Salmonidea

Xu-Pao, Min kuanhong., Zhu-JianWang Jianxip and Gong Yongseng (2004): Comparative studies on spawning inducing using Ovaprim and other hormones, Fresh Water Fishery Science. Waxi China (1-10)

RESEARCH ARTICLE

A COMPARATIVE STUDY OF PROTEIN IN MUSCLES AND REPRODUCTIVE PHASES OF GONDAS OF CHANNA GACHUA (HAM)

Dept of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S) India.
* Late. Laxmibai Deshmukh Mahila college, Parli V. (M.S) India.
**Deogiri College Science, Aurangabad (M.S) India.

ARTICLE INFO

Article History:
Received 2nd December, 2010
Received in revised form 21st, January, 2010
Accepted 27th, February, 2010
Published online 1st, March

Key words:
Protein
Muscles
Gondas
Channa gachua

ABSTRACT

The comparative study of protein has been estimated from the muscles and gonads of Channa gachua. The changes of protein level in muscles appear to be accordance with the specific needs of different reproductive phases of the gonads.

INTRODUCTION

The phenomenon of reproduction is a complex process directed to growth, survive and continuity of the species. Development of gonads requires a specific quantum of protein and other biochemical content. During the reproductive season fish draw upon these content from the muscles, for the growth and development of the gonads.

Lots of works is on records on the biochemical composition of many teleostean fishes (Gerking, 1995; Brett et al; 1969; Niimi, 1972; Elliott, 1976; Eliaussen and Vahl, 1982; Luzzana, et al; 1996) but very few (Bailey et al; 1952; Keller and Britness, 1958; and Craig, 1977) have related it with reproductive phases. An attempt has been made to compare and correlate the variation of protein to the reproductive phases of gonads.

MATERIAL AND METHODS

Sexually mature fishes Channa gachua were collected regularly during the breeding season (March to September) of year 2004 from the river Kham near Aurangabad. (North longitude 190-200; East longitude 740-760). Gonads and muscles are processed for biochemical estimation of protein (Lowry et al; 1951) content.

RESULTS

Persual of Table 1 and Fig. 1 reveals that protein content of muscles observe constant values from preparatory (5.66) to early pre-spawning phase (5.38).

© Copy Right, IJC, 2010 Academic Journals. All rights reserved.

At the same time gonads showed gradual increasing values from preparatory (testis 5.06, 12.00 ovary 6.49, 12.23) to pre-spawning (testis 23.68, 32.68 and ovary 24.06, 32.37). This decline of protein in muscles may probably be due to its active utilization by the gonads for the development.

During spawning phase the muscles protein has been observed to rise in their percentual values rising maximum (8.90). This shoot up in muscles protein may be the result of favourable feeding condition during this phase. (Silvertstein,1935). Gonads reached peak values (testis 38.86 and ovary 39.87) of their protein content may require for the spawning.

Muscles protein showed gradual increasing from August to September (10.02 and 10.82) and gonads showed decline in protein content. Decline in gonadal protein con is attributed to its transfer in to muscles to meet energy requirement of fish (testis 21.19., 15.43 and ovary 22.39., 1613).

DISSCUSSION

Variations in the protein contents in gonads during reproductive phases of fish, Channa gachua viz, preparatory, pre-spawning, spawning and post spawning phase took place in involving biochemical event. Protein has a significant role in growth and all metabolic process. According Wallace and Selman, (1985) in Fundulus heteroclitus, the major protein changed both qualitatively and quantitatively during development of gonads. It has been observed that in C. punctatus, H. fossilis and T. mossambica, (Verma et al; 1985, 1989), S. baccata (Fisca
Table 1. Comparative study of protein in gonads and muscles of *Channa gachua*

<table>
<thead>
<tr>
<th>REPRODUCTIVE PHASE</th>
<th>MONTHS</th>
<th>PROTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TESTIS</td>
</tr>
<tr>
<td>Preparatory Phase</td>
<td>May</td>
<td>5.96</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>12.00</td>
</tr>
<tr>
<td>Pre-spawning Phase</td>
<td>May</td>
<td>23.68</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>32.68</td>
</tr>
<tr>
<td>Spawning Phase</td>
<td>July</td>
<td>38.86</td>
</tr>
<tr>
<td>Post-spawning Phase</td>
<td>August</td>
<td>21.19</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>15.43</td>
</tr>
</tbody>
</table>

Fig. 1. Variation in protein, in gonads and muscles of *Channa gachua*

and Ravindra, 1999), *Schizothorax richardsoni* and *Glyptothorax pectinopterus* (Singh and Nautiyal, 1990), *C. orientalis* (Sharma and Saxena, 1991), and *Clarias batrachus* (Saksona and Agarwal, 1991) the level of protein was highest and lowest during spawning and preparatory phase respectively. In *Channa gachua* the high content of protein may be active utilization of gonads from muscles (Gupta et al: 1997) support for their may drawn from the observation of Love, (1970), who stated that the building of gonads is always accomplished at the expense of body protein. Dambergs (1964) who observed a decline in muscles protein of *Gadus morhua* during growth phase. John and Hameed, (1995) who also observed a gradual decline in muscles protein in *Nemipterus japonicus* In spawning phase, the muscles protein also showed increased values of protein, a similar increase in muscles protein with of developmental of gonads. Similar result had reported by Macay and Tunision, (1936), Jafri, (1968). According to them highest protein in muscles and gonads might be of active feeding during this phase.

Gonadal protein stared decline gradual from August (post spawning phase) muscles protein shows increasing through this phase. Scheepkin, (1972) working on *Trachurus mediterranea Ponticus* found increased muscles protein in post spawning phase. A similar trend seen in present study, it was compared in between muscles protein and gonads protein of *Channa gachua* during different reproductive phases.

ACKNOWLEDGEMENTS

The authors thank to Head, department of zoology, for providing the necessary, facilities. Thanks due to Prof. Y.K. Khillare for their valuable guidance during the course of present study.

REFERENCES

Ovaprim induced effect on testis of *Channa gachua*

V.F. Dabhade*, T.S. Pathan, P.R. Mor, D.L. Sonawane
Department of Zoology, Dr. Babasaheb Ambekar Marathwada University, Aurangabad-431004 (M.S.) India
*Corresponding Author, Email: dabhadedarshad@gmail.com

Keywords
- Testicular reorganization
- Spermatogenesis
- Sertoli cells and Leydig cells
- *Channa gachua*

Abstract
The testis of *Channa gachua*, after administration of Ovaprin, showed changes in the morphology of testis and in the serum androgen level within period of 72 hrs. Morphological changes included spermatogonial proliferation, activation of Leydig's and Sertoli cells, organization of seminiferous lobules and formation of lobular lumen in testis. Leydig cells were enlarged, exhibited characteristics of steroid producing cells. Sertoli cells became elongated, showed signs of high cellular activities and remained in close contact with spermatogonia. The lobular organization was achieved much earlier than the progression of spermatogenesis.

1. **Introduction**

In vertebrates various components of testis forms well defined cellular organisation. The association of the cells and sequences of their appearance in the seminiferous tubules are highly organised. However, in the fishes, each spermatogenetic cycle, followed by a resting stage for the release of spermatozoa during the process of late spermatogenesis by the rearrangement of germ cell cysts and somatic cells especially Sertoli cells.

Induction of spermatogenesis and maturation has been observed by the administration of Ovaprin doses for different duration. In present investigation, an attempt has been made to study the organization of testis of germ cell and observations after induction of spermatogenesis in fresh water fish, *Channa gachua* under the influence of Ovaprin.

2. **Material and Methods**

Live species of *Channa gachua* were collected from Kham river, near Aurangabad (M.S) India. Fish were collected during period of March 2007 to September 2008. They were brought to Laboratory, weighted (35.6 to 298 gm and length 8.5 to 20.5 cm) and kept in freshwater aquarium. Ovaprin was administered intraperitoneally to fish at a dose 0.25ml/kg (Syndel laboratory, Canada). A single dose is normally sufficient to induce maturation (0.25ml/kg).

3. **Results**
The testis of *Channa gachua* consists of germinal tissue and intermingles with connective tissue (Fig. 1A). The germinal tissue was disposed into chord-like testicular lobules containing spermatogonia and few Sertoli cells. The interlobular connective tissue also contains interstitial cells and blood capillaries. The spermatogonia were rounded in shape with rounded nuclei and prominent nucleoli. The cell boundaries, nuclear boundaries, and darkly stained granules were distinctly visible (Fig. 1B). The Sertoli cells were found amongst spermatogonia were irregular shaped with well defined nuclei.

In present study, activation of sertoli cells and Leydig cells after 12 hrs, spermatogonial division after 24 hrs and lobular organization after 72 hrs were achieved by injecting a single dose of Ovaprin (Fig. 1D). After 72 hrs when the primary spermatogonia and secondary spermatogonia along with sertoli cell organize themselves in such a manner that a quite distinct lobular structure with the lumen was formed as compared to controlled (Fig. 1C). The interlobular connective tissue was reduced.

Spermatogonia have a sheet of cytoplasm around large rounded (Fig 2B), homogeneously dense nuclei compared to control (Fig 2A). Single sometimes double nucleoli with dense granules were observed. Sertoli cells were found surrounded the spermatogonia, whether the cysts were in cluster of the seminiferous lobules. They posses irregular nuclei and contain round lipid globules. Rounded but sometimes elongated Leydig cells were disposed...
singly or in groups at the periphery of the testicular cysts separated by basal lamina along with fibroblast cells and other connective tissues. The testicular organization remains the same but the spermatagonia were increased (Fig. 2D). Compare to control (Fig. 2C). Sertoli cells were elongated with an irregular nucleus containing more electron dense material towards its periphery. Sertoli cells were received invaginations of spermatogonial cytoplasm indicating very close physiological association between them. Leydig cells were further activated.

Plate No. 1 T.S.of Testis. A- Controlled (Preparatory Phase). Note the connective Tissue (CT). Note the less No. of primary spermatogonia (PSG), B- Injected (Preparatory Phase) Note the primary and secondary spermatogonia (PSG and SSG) abundant in No. and large in size, Dark stained indicated the large secretion of gonadotropin, C- Controlled (Pre-spawning Phase) Less No. of Secondary spermatogonia (SSG), D- Injected (Pre-spawning Phase) Secondary spermatogonia (SSG) and primary spermatocyte (PSC) more in No. Sertoli cell (SC) and Leydig cell (LC) becoming active with better cytoplasm.

Plate No. 2 T.S. of Testis. A- Controlled (Spawning Phase) Less No. of primary and secondary spermatocyte (PSC and SSC). Note signs of secretary activity, B- Injected (Spawning Phase) Elongated sertoli cell (SC). Note the association between secondary spermatocyte and sertoli cell. Leydig cell with better cytoplasm. C- Controlled (Post-spawning Phase) Note the No. of residual sperm. Leydig cell with less cytoplasm. D- Injected (Post-spawning Phase) Note the No. primary secondary spermatocyte and residual sperm.
Seventy two hours after injection, spermatogonia were produced. These cells have dense nuclei with heterogenous distribution of electron dense granules. The cellular bridges between these cells were also observed. Sertoli cells were much elongated. The lipid globules were usually present in the sertoli cells. Leydig cells at this stage were large and found in the groups and assume characteristics of steroids synthesizing cells.

The testicular lobules contain spermatogonia and sertoli cells. Early spermatogonia took part in the cysts formation. The sertoli cells were found surrounded the germ cells and located in clusters filled up the spaces in chord like lobules. With increased spermatogonial division, and number and size of testicular cysts were increased and groups of sertoli cells becomes localized in the centre. Further, increased in the size of cysts took places due to division of spermatogonia. As the result, central sertoli cells were pushed apart leaving a gap in between, in the shape of tubular lumen. The testicular lobules thus formed consist of cysts containing spermatogonia surrounded by sertoli cells with a lumen in the centre and Leydig cells were lying just outside the cysts.

4. Discussion

The testis in most teleosts consists of compact paired structures lying in the abdominal cavity and composed of mass elongated, branched tubular structure with thin fibrous walls which lack a permanent lining, seminiferous epithelium and because of this reason, they are generally referred to as lobules, crystal or canals (Lofts,1968). On the basis of distribution of spermatogonia and spermatogenic pattern, two kinds of testicular structures namely, tubular and lobular types have been identified (Hoar 1969; Billard et al., 1982; Nagahama 1983; 1986; Redding and Patino, 1993).

The pituitary gonadotropic function seems to be responsible for suspended maturity in male Channa gachua in river. Successful attempts have been made to induced sexual maturity in Channa gachua by means of hormonal injections. Colombo et al., (1987) and Khan et al., (1987) induced spermatogenesis and production of spermatocytes in European eel by administering a single dose of hCG after 1month and 3 months, respectively. Sugimoto and Takahashi (1979) have shown that interstitial (leydig) cells were activated in the testis of Japanese eel during hCG induced maturation. Recently, Miura et al., (1991a) had induced sexual maturation in Japanese male eel with in 18 days by administering a single dose of hCG. The histarchitectue of testes after 6, 12, and 18 hours of treatment remained unchanged. After 24 hrs of hormonal injection, the dramatic changes took place and lobular organization after the 72 hrs. Thus the pituitary-gonadotropic function was restored by exogenous administration of Ovaprim resulting in the induction of spermatogenesis.

The structure and deposition of spermatogonia were similar to the description of earlier workers (Gresik et al., 1973; Sugimoto 1979; Griet 1975; Billard 1984; Colombo et al., 1987; Miura et al., 1991a). In Channa gachua primary spermatogonia were always surrounded by sertoli cells, while secondary spermatogonia were restricted to testicular cysts and continue to divide until spermatozoa formation. Each cysts was enclosed in a covering of sertoli cells and the cells extended in between and remains in close contact with spermatogonia. Clusters of sertoli cells were also occured inside the testicular lobules. The leydig cells occurring singly or in groups always lies the outside the interstitial cells separated by basement membrane.

The sertoli cells in the testes testis perform several functions including support and structural organization of the cysts, lobules and tubules help in the formation of spermatogonia and eventual conversion of metabolites and hormones towards the germ cells or central cavity phagocytosis of germ cells and in isolation of cysts compartments beyond the spermatocytic stage (Billard, 1986). These cells have also been implicated with steroid production in certain species (Weiβ 1969; Bars 1969; Van den Hurk et al., 1980). The sertoli cells remains in very close and direct association with germ cells which they support physically and nurture by modifying the chemical environment (Redding and Patino, 1934). The sertoli cells becomes active within 12 hrs of Ovaprim treatments as evidenced by increasing cell and nuclear size, organization and distribution of dense globule material. The peak activity was achieved after 72 hrs.

The Leydig cells were typically interspersed in the connective tissue surrounding germ cells--sertoli cells unit and their primary function is to produce steroids needs for gametogenesis. These are characteristically steroids-producing cells in Channa gachua testis which becomes elongated after Ovaprim treatments. The Leydig cells in the present study also became activated within 72 hrs synthetic hormones treatments. Same results were found by Sugimoto and Takahashi, 1979; Colombo et al., 1987; Miura et al., 1991b; Follinius and Porte, 1960.
It might be concluded that, Ovaprim first stimulated androgen; testosterone and mainly 11-
ketotestosterone in turn induce spermatogonial proliferation and organization of testicular lobules
with a wide lumen within a 72 hrs. The sertoli cells remain in close contact with the spermatogonia, and
maintained supply of metabolites and other substances later. They also took part in the lobular
organization and formation of its lumen. This further strengthened our earlier conflict regarding the
stimulatory effect of Ovaprim on the induction of spermatogenesis and sexual maturation.

Acknowledgement

Authors are grateful to, Head, Department of Zoology, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431004 (M.S) India for providing laboratory and library facilities. We are also
thankful to UGC for providing financial assistance under JRF during the research.

References

26 pp 877-920
Billard R., Fostier A., Weil C., Breton B., (1982): Endocrine control of spermatogenesis in the
cyto logical structure, plasma sex steroids and gonadal cytoser free steroids receptor of
heterologous gonadotropin (hCG)-stimulating silver eel, Anguilla anguilla. Comp. Endocrinal. 65.
pp167-178
Follinius E., and Porte A. (1960): Cytology of fine dense cellular interstitial testicular position,
Labiets reticulats. R. Experientia 16. pp 191-919
Gresik E.W., Gerald Q., and Hamilton J.B. (1973): A fine structural and histological study of Leydig
cell in testis of the teleost, Oryzias latipes (Cyprinodontiformes); Gen Comp Endocrinol. 20.
pp 86-98
Grier H.J. (1975): Aspects of germinal cysts and sperm development of Pocilla latipinna,
(Teleostei: Poeciliidae); J. Morphol. 146. pp 229-250

by a single injection of hCG in intact and hypophysectomised immature European eel,
(Anguilla anguilla). Gen Comp Endocrinol 68. pp 91-105
Lofts B. (1968): Pattern of acrivity in Perspectives in Endocrinology (eds) E.J.W. Barrington and C. B.
eel, Anguilla anguilla by a single injection of human chorionic gonadotropin. Zool Sci 8. pp
63-73
Nagahama Y. (1983): The functional morphology of teleost gonads in Fish Physiology (eds) W.S. Hoar,
Evans (Boca Raton C.R.C. Press) pp 503-534
Japanese eels, Anguilla japonica treated with human chorionic gonadotropin Bull Far Fish
Hokkaido Univ 30 pp 22-33
cytocellular aspects of the testis and vas deferens on the rainbow trout, Salmon gairdneri
Cell Tissue Res 186 pp 309-325
Gibbons Gen Comp Endocrinol 12 pp 256-266
SEASONAL VARIATIONS OF PROTEIN IN THE OVARY OF FISH CHANNA GACHUA

V.F. Dabhade*, T.S. Pathan, S.E. Shinde, R.Y. Bhandare, D.L. Sonawane
Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.), India

Abstract

The present study was carried out in the breeding seasons from 2004 to 2006. The ovary of fresh water fish Channa gachua was analyzed for its protein content during period of four different phases of reproductive cycle, in Channa gachua i.e. preparatory, pre-spawning, and post-spawning. Protein content found in preparatory phase was non-significant, and significantly increased from pre-spawning to spawning and declined in post-spawning (mg/g wet weight of ovary).

Key Words: Protein content, ovary, Channa gachua.

Introduction

Fish protein contains all essential amino acids which are easy to digest. The protein digested and assimilated is mostly incorporated in to muscles of the fish. Fats, on the other hand, have a high caloric value and stored in muscles, liver, intestine and gonads.

In the breeding season, the fish draws up from muscles protein and used and for the growth and development of the reproductive organs.

Knowledge of biochemical composition of fish is of great help in evaluating its nutritive value (Kingston and Venkatararnani 1954). Though lot of work on biochemical composition has been undertaken very few (Bailey et al; 1952; Idler and Blmers, 1958; Brown, 1957; Gupta and Raina Sujata, 1977) have correlated with reproductive cycle. The protein content was studied in number of teleosts such as Oreochromis mossambicus (Pathan and Baile 2005), Heteropneustes fossilis (Hunge and Baile 2003), Channa orientalis (Saksena & Sexena 1999), Claris batrachus (Bana, 1977). Garra mullaya (Khan & Mehrotra 1991), Schizothorax richardsoni & Glyptocephalus pentinopterus (Singh & Nauriyal, 1990). Reproduction in fishes depends upon co-ordinated actions of various hormones associated with brain-pituitary-gonadal axis (Evans, 1998). The hypothalamic-pituitary-gonadal level concerning the possible biochemical interaction in teleost was along this axis (Pathan and Baily, 2005). In the present study, ovary has been selected to establish the possible correlation of metabolites and reproductive cycle.

In India, the data available on the chemical composition of fish, especially the fresh water fish, related mainly to their nutritive value. The present study has been undertaken to correlate the variations in biochemical composition of ovary in fresh water fish, Channa gachua to its reproductive phases. This attempt has been made to find out whether the biochemical constituents i.e. protein of Channa gachua at different times, could be related to reproductive cycle of ovary.

Materials and Methods

Live species of Channa gachua, were collected from Kham river near Aurangabad. Fishes were collected during the period of early March to late September. They were brought to Laboratory, weighted, scarified after pitting, to take out their ovaries. The ovaries were observed in each case and reproductive cycle was noted. Protein was estimated by drying ovary for 24 to 36 hours in an ovan maintained at 68°C. This ovary was processed for their biochemical estimations of protein (Lowry et al, 1951).
Result and Discussion

The values of protein obtained in female *Channa gachua* There were two years data were given in table No.1. Protein content was found highest during spawning phase and attained peak values were (34.94±4.023, 38.0608±1.8304 and 36.0042±0.3426) and lowest in preparatory phase were (9.094±0.549, 8.5386±0.7058 and 9.8674±0.6704) mg/g.

Table No 1: Seasonal variation in the protein in ovary of *Channa gachua* (mg/g wet weight of ovary)

<table>
<thead>
<tr>
<th>Phases of Reproductive Cycle</th>
<th>Percentage of protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>2005</td>
</tr>
<tr>
<td>Pre-spawning Phase</td>
<td>17.357 ± 0.956</td>
</tr>
<tr>
<td>Spawning Phase</td>
<td>34.944±4.023</td>
</tr>
<tr>
<td>Post-spawning Phase</td>
<td>16.835±0.733</td>
</tr>
</tbody>
</table>

In (early March to early June) preparatory and pre-spawning phases the low level of protein might be due to its active utilization by ovaries during the process of vitellogenesis. Observations in the present study correlates positively to the observations of Love, (1970) who stated that, the building up of gonad is always accomplished at the expense of body protein. Similar results have been reported by John and Hameed, (1995).

During spawning phase (i.e. late June to July) protein found to be increased and reaching maximum in spawning phase was attributed to low metabolic activity. Bano, (1977), Macay & Tunison, (1938), Jahir, (1968) also noted the increased protein content in muscle and they also attributed in increment with gonad maturity. Increase in protein content of muscle with maturation of gonads which was the result of active feeding in pre-spawning phase.

Shireni (1980) stated that the protein cycle in fishes can be synchronized with maturity of fishes than feeding. The efforts have been put forth by Damberg (1964) and noticed a decline in muscles protein of *Gadus morhua* during growth of gonads.

During the present study it was noticed that ovarian protein started declining in August to early September i.e. period of post spawning phase Jafri and Khawaja (1968) reported protein cycle in of *Ophicephalus punctatus* and showed correlation between feeding and spawning. Muscle protein started declining gradually during spawning and post-spawning phases. This decline of muscle protein can be attributed to its transfer in to ovaries to meet energy requirement of fish during spawning and post-spawning phases. Decline of protein has also been reported by Srikanth et. al. (1979) in *Clarias batrachus*; Somavanshi, (1983) in *Garra mulya*; and Luzzana et. al., (1996) in *Coregonid bondella*.

Acknowledgement

Authors are grateful to, Head, Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (M.S.) India for providing laboratory and library facilities. We are also thankful to UGC for providing financial assistance under JRF during the research.

Reference

Hyder M. (1970a). Histological studies on testis of pond specimens of *Tubapia nigra* (Gunther) Pisces: (chilidae) and the complications on the pituitary

Hyder M. (1970b). Gonadal and reproductive patterns in
Tilapia leucotica (Teleostei; Cichlidae) in an
equatorial lake lake Naivasha (Kenya). J. Zool. Land

Biochemical composition of *Nemipterus japonicus*
and *Nemipterus leptolepis* in relation to maturity cycle.
Fishery Tech Vol.32(2): 102-107

Jafri A. K. & Khawaja D. K. (1968). Seasonal changes in
biochemical composition of fresh water murrel
Ophiocephalus punctatus (Bloch). Hydrobiologia, 32

Khan E.A. and Mehrotra P.N. (1991) Variation of lives
protein and RNA in relation to egg maturation in a
hill stream teleost Garra mullaya (Sykes). J. Reprod.

Biochemical composition yellow stripe scad,
Selanoides leptolepis as a function of maturity stage
and length fishery Tech. Vol 31 (2): 159-162.

Love R.M. (1970) "The chemical Biology of fishes"
Academic press, Landon.

Lowry O.H. Rosebrough N., Farr A.L. & Randall R.J.
(1951). Protein measurement with Folin Phenol

Luzzana U. Serrini, G. Moretti V.M. Grimaldi P. Paleari
content and fatty acid composition of male and
female Coregonid bondella from Lake Maggiore and
Land locked shad from Lake Ceno (North Italy). J.

Macy M. and Tunison A.V. (1936): Cortland Hatchery
Report No. 5. N.Y. State Cons. Deptt. Us Bur of fish
and Cornell Univ.

Pathan J.G.K. & Baile V.V. (2005). Protein variation in
relation to the reproductive cycle in male Tilapia,
2 (1-2), 1-10.

intergration during the reproductive cycle found in
Delhi.

Shreni D. Kalpana (1980). Seasonal variations in the
chemical composition of cat fish. *Heteropneustes
89, No. 2. P 191-196.

of some biochemical constituents in the reproductive
cycle of hill stream teleosts. *Schizothorax
richardsonii* (Gray) & *Glyptophorus pectinopterus*

Sorianshi (1983). Seasonal changes in biochemical
composition of Hill stream fish *Garra mullaya* Ind. J.
Fish. Vol. 30 (1).

Srikar L.N., Keshavanath P.Peter M. (1979). Changes in
biochemical composition of *Claris batrachus* in
before and after spawning, Mysore J. Agr.