CONTENTS

I. INTRODUCTION AND OBJECTIVES 1

II. SOLID PHASE PEPTIDE SYNTHESIS: AN OVERVIEW 16

1. Chemical synthesis of peptides 18
2. Solid phase peptide synthesis 20
3. Problems involved in solid phase peptide synthesis 24
4. Recent trends in solid phase peptide synthesis 28
5. Solvation within the solid phase 31
6. Incomplete coupling and deprotection reactions 35
7. Impact of secondary structure formation during synthesis 36
8. Non-equivalence of reaction sites 37
9. Optimization of the polymer support 39
10. Effect of macromolecular matrix 41
11. Molecular character and extent of crosslinking 42

III. MACROMOLECULAR SYSTEMS SELECTED AND METHODOLOGY: SYNTHETIC AND PHYSICOCHEMICAL STUDIES 44

1. Polymer synthesis 45
 a. Poly(acrylamide)s crosslinked with N, N'-methylene bisacrylamide 45
 b. Poly(acrylamide)s crosslinked with tetraethyleneglycol diacrylate 47
 c. Poly(acrylamide)s crosslinked with triethyleneglycol dimethacrylate 48
 d. Poly(acrylamide)s crosslinked with divinylbenzene 50
e. Terpolymers of acrylamide, N,N'-dimethylacrylamide and N,N'-methylene bisacrylamide

f. Terpolymers of acrylamide, N,N'-dimethylacrylamide and divinylbenzene

g. Poly(styrene)s crosslinked with triethyleneglycol dimethacrylate

2. Functionalisation of the crosslinked polymers

a. Transamidation of crosslinked poly(acrylamide)s to poly(N-2-aminoethylacrylamide)s

b. Transamidation of poly(acrylamide)s to poly(N-2-aminohexylacrylamide)s

c. Functionalisation of crosslinked poly(styrene)s by chloromethylation

3. Functional group analysis

a. Amino capacity

b. Extent of chloromethylation

4. Reactivity studies

a. Effect of nature of monomers and resulting polymeric system on reactivity

b. Effect of nature of crosslinking agent

c. Effect of degree of crosslinking

d. Effect of solvent

e. Effect of spacer on reactivity

5. Swelling and solvation

a. Polyacrylamide-based resins

b. Polystyrene-TEGDMA resins

(ii)
6. Water binding studies

 a. Equilibrium water content
 i. Effect of nature of monomers and cross-linking agent on EWC
 ii. Effect of degree of crosslinking
 iii. Effect of method of polymerisation
 iv. Effect of temperature on water sorption
 v. Time-course of hydration: effect of degree of crosslinks

 b. Desorption kinetics

 c. Water structuring in poly(acrylamide) gels

 d. Weight percent oxygen content

 e. Water-swollen poly(acrylamide)s: physical nature and mechanical characteristics

7. Morphological studies

 a. Effect of crosslinking agent on morphology

 b. Effect of extent of crosslinking on morphology

 c. Linear Vs. crosslinked poly(acrylamides)

 d. Effect of addition of a third component: terpolymerisation and subsequent morphology

 e. Effect of method of polymerisation on morphology

 f. Effect of functionalisation on morphology

 g. Morphology of poly(styrene)-TEGDMA resins

10. Thermal stability of the supports
IV. SYNTHESIS OF MODEL PEPTIDES AND BIOACTIVE PEPTIDES

1. Preparation of 4-bromomethyl benzoyl amino-ethyl poly(acrylamide) .. 157
2. Synthesis of Gly-Ala ... 158
4. Synthesis of Phe-Leu-Leu .. 161
5. Synthesis of Crabrolin: Phe-Leu-Pro-Leu-Ile-Leu-Arg-Lys-Ile-Val-Thr-Ala-Leu-a peptide toxin 164
6. Problems encountered in the synthesis ... 168
7. Synthetic attempts with other acrylamide-based supports ... 169
8. Gisin's method Vs. triethylammonium salt method for C-terminal amino acid attachment 170
9. Attempt to attach the first amino acid as its acid chloride ... 172
10. Inherent problems with the acrylamide-based supports ... 173
11. Crosslinked terpolymers of acrylamide and N, N'-dimethylacrylamide as supports 174
12. Synthesis of a drug targeting tetrapeptide: Ala-Leu-Ala-Leu ... 175
14. Synthesis of a contraceptive tetrapeptide: Thr-Pro-Arg-Lys .. 186
15. Synthesis of a delicious octapeptide: Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala 190
V. EXPERIMENTAL

Part A. Preparation of polymers and functionalisation

Materials and methods

1. Source of chemicals
2. Polymer synthesis
3. Amino functionalisation
4. Preparation of anhydrous zinc chloride in THF
5. Preparation of chloromethyl methylether
6. Estimation of capacity
7. Preparation of N-benzoylglycine 4-nitrophenyl ester
8. Aminolysis of polymeric amines by the active ester
9. Estimation of functional group reactivity towards peptide coupling
10. Swelling and solvation
11. Determination of equilibrium water content of crosslinked poly(acrylamide)s
12. Estimation of freezing and non-freezing water content
13. Water sorption/desorption experiments
14. Polymer morphological studies
15. Thermal stability of the supports

Part B. Peptide synthesis

16. Source of chemicals
17. Physical measurements
18. Purification of reagents and solvents
19. Detection
20. Visualisation
21. Amino acid analysis
22. Preparation of derivatives
 a. Preparation of Boc azide from t-butyl carbazate
 b. Preparation of Boc amino acids by Schnabel's method
 c. Preparation of Boc amino acids by Boc-ON method
 d. Purity of Boc amino acids
23. Methods of coupling
 a. Dicyclohexylcarbodiimide method
 b. Active ester method
24. General method for solid phase peptide synthesis
25. Deprotection procedure
26. Purification
27. Amino acid analysis
28. Peptide sequencing
29. Circular dichroism measurement
30. Preparation of 4-bromomethyl benzoic acid from 4-methyl benzoic acid
31. Preparation of 4-methyl benzoyl chloride from 4-bromomethyl benzoic acid
32. Preparation of 4-bromomethyl benzoyl aminoethyl DVB-crosslinked poly(acrylamide)
33. Estimation of bromine content in the bromo resin
34. Capping the residual amino groups by acetylation
35. Attachment of the first amino acid to the bromo resin via esterification
36. Attachment of first Boc amino acid by Gisin's cesium salt method
37. Estimation of first amino acid substitution by picric acid method
38. Preparation of 4N HCl/dioxane
39. Synthesis of Ala-Leu-Ala-Leu
40. Synthesis of Lys-Val-Leu-Gly
41. Synthesis of Thr-Pro-Arg-Lys
42. Synthesis of Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala
44. Synthesis of Pro-Lys-Leu-Leu-Lys-Thr-Phe-Leu-Ser-Lys-Trp-Ile-Gly

VI. SUMMARY AND OUTLOOK

VII. REFERENCES