Contents

<table>
<thead>
<tr>
<th>Chapter I</th>
<th>Introduction and scope of the present investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2</td>
<td>Ligand profiles</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Citalopram</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Tramadol</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Venlafaxine</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Curcumin</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Chalcone derivative</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Chlorophenylmethanone derivative</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope of the present work.</td>
</tr>
<tr>
<td>1.4</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter II</th>
<th>Reagents, methods and instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials employed</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Ligands</td>
</tr>
<tr>
<td>2.3</td>
<td>Purification of the solvents</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Chloroform</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Dimethyl formamide</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Nitromethane</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Nitrobenzene</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Ethanol</td>
</tr>
<tr>
<td>2.4</td>
<td>Analytical procedure</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Estimation of metal</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Estimation of anions</td>
</tr>
<tr>
<td>2.5</td>
<td>Instrumentations</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Melting point</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Elemental analyzer (C, H, N and S)</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Electrical conductance measurements</td>
</tr>
</tbody>
</table>
2.5.4 Magnetic susceptibility measurements
2.5.5 Electronic spectra
2.5.6 Infrared spectral measurements
2.5.7 Proton nuclear magnetic resonance
2.5.8 Thermogravimetric analysis
2.5.9 X-ray powder diffraction studies

Chapter III Cobalt(II) mixed ligand complexes of CP, TD and VF
3.1 Introduction 21 - 65
3.2 Experimental procedure
3.2.1 Synthesis of Co(II) mixed ligand complexes of CP, TD & VF
3.3 Physico chemical techniques
3.4 Results and discussion
3.4.1 Physical properties
3.4.2 Molar conductance measurement
3.4.3 Elemental analysis
3.4.4 Magnetic properties
3.4.5 Electronic spectral measurements
3.4.6 IR Spectra
3.4.7 Mode of anion bonding
3.4.7.1 Chloro and Bromo complexes
3.4.7.2 Perchlorato complexes
3.4.7.3 Acetato complexes
3.4.7.4 Nitrato complexes
3.4.7.5 Sulphato complexes
3.4.8 Proton nuclear magnetic resonance
3.4.9 Thermogravimetric analysis
3.4.10 X-ray powder diffraction studies
3.4.11 Conclusion
3.5 Reference

Chapter IV Nickel(II) mixed ligand complexes of CC, CLN and CDM
4.1 Introduction 66 - 101
4.2 Experimental procedure
4.2.1 Synthesis of Ni(II) mixed ligand complexes of CC, CLN & CDM
4.2.2 Analysis of mixed ligand nickel(II) complexes
4.3 Results and discussion
4.3.1 Physical properties
4.3.2 Molar conductance measurement
4.3.3 Elemental analysis
4.3.4 Magnetic properties
4.3.5 Electronic spectral measurements
4.3.6 Infrared spectral studies.
4.3.7 Mode of anion bonding
4.3.7.1 Chloro and bromo complexes
4.3.7.2 Perchlorate ion
4.3.7.3 Acetate ion
4.3.7.4 Nitrate ion
4.3.7.5 Sulphate ion
4.3.8 Proton NMR spectral studies
4.3.9 Thermogravimetric analysis
4.3.10 X-ray powder diffraction studies
4.3.11 Conclusion
4.4 References

Chapter V Manganese(II) mixed ligand complexes of CC, CLN and CDM
5.1 Introduction 102 - 150
5.2 Experimental procedure
5.2.1 Synthesis of Mn(II) mixed ligand complexes of CC, CLN and CDM
5.2.2 Analysis of mixed ligand manganese(II) complexes
5.3 Results and discussion
5.3.1 Physical properties
5.3.2 Molar conductance measurement
5.3.3 Elemental analysis (C, H, N and S)
5.3.4 Magnetic properties
5.3.5 Electronic spectral measurements
5.3.6 IR spectra
5.3.7 Mode of coordination anion
5.3.7.1 Chloro and bromo complexes
5.3.7.2 Perchlorato complexes
5.3.7.3 Acetato complexes
5.3.7.4 Nitrato complexes
5.3.7.5 Sulphato complexes
5.3.8 Proton nuclear magnetic resonance
5.4 Kinetic and thermodynamic parameters studies
5.4.1 Introduction
5.4.2 Mechanism of thermal degradation
5.4.3 Kinetic and thermodynamic parameters
5.4.4 Conclusions
5.5 X-ray powder diffraction studies
5.6 Conclusion
5.7 References

Chapter VI Cobalt(II) mixed ligand complexes of CC, CLN and CDM
6.1 Introduction
6.2 Experimental procedure
6.2.1 Synthesis of cobalt(II) mixed ligand complexes of CC, CLN and CDM
6.2.2 Analysis of mixed ligand cobalt(II) complexes
6.3 Results and discussion
6.3.1 Physical properties
6.3.2 Molar conductance measurement
6.3.3 Elemental analysis
6.3.4 Magnetic properties
6.3.5 Electronic spectral measurements
6.3.6 IR spectra
6.3.7 Mode of coordination anion
6.3.7.1 Chloro and bromo complexes
6.3.7.2 Perchlorato complexes
6.3.7.3 Acetato complexes
6.3.7.4 Nitrato complexes
6.3.7.5 Sulphato complexes
6.3.8 Proton nuclear magnetic resonance
6.4 Thermodynamic and kinetic studies
6.4.1 Kinetic thermodynamic parameters
6.4.2 Mechanism of thermal degradation
6.4.3 Conclusion
6.5 X-ray powder diffraction studies
6.6 Conclusion
6.7 Reference

Chapter VII Biological activity of Co(II), Ni(II), and Mn(II) mixed ligand complexes of CP, TD, VF, CC, CLN and CDM

7.1 Introduction
7.2 Experimental procedure
7.2.1 Preparation of complexes
7.2.2 Materials used as antimicrobial compounds
7.2.3 Sources of microorganisms
7.2.4 Preparation of inoculum
7.3 Methods
7.3.1 Well agar diffusion assay
7.3.2 Agar spot assay
7.3.3 Batemann poisoned food technique
7.4 Results and discussion
7.4.1 Well agar antimicrobial assay
7.4.2 Effect of pH and temperature on antimicrobial action
7.4.3 Antiyeast activity
7.4.3.1 Agar spot assay
7.4.3.2 Well agar diffusion assay
7.4.3.3 Antifungal assay by Batemann poisoned food technique.
7.5 Conclusion