Nomenclature

A : Absorber area (m2)
A$_c$: Aperture area (m2)
A$_{ca}$: Collector area (m2)
A$_g$: Glazed surface area (for BC) (m2)
A$_t$: Pot surface area (m2)
C : Concentration ratio
C$_{pa}$: Specific heat per unit volume at constant pressure of the mixture
C$_R$: Heat capacity ratio.
C$_u$: Specific heat of cooking utensil (J/kg$^\circ$C)
C$_w$: Specific heat capacity of water (J/kg$^\circ$C)
C$_1$, C$_2$, C$_3$: Coefficients used in equation (2.12)
D$_i$: Inside diameter of the pot (m)
D$_o$: Outside diameter of the pot (m)
F : Fin efficiency factor
F' : Heat exchange efficiency factor / Collector exchange efficiency factor.
F$_1$: First figure of merit (m2 K/W)
F$_2$: Second figure of merit
G : Solar irradiance (W/m2)
G$_{av}$: Average solar radiation (W/m2)
G$_{sb}$: Average solar beam radiation on the plane of aperture (W/m2)
G$_{NR}$: Reference direct normal radiation (W/m2)
G$_{av}$: Average total solar radiation on the plane of aperture (W/m2)
Gr : Grashof number
h$_c$: Convective heat transfer coefficient (W/m2-K)
h$_e$: Mass transfer coefficient
\(h_{fi} \) : Heat transfer co-efficient from fluid to inner wall of the pot (W/m\(^2\)-K)

\(h_r \) : Radiative heat transfer coefficient (W/m\(^2\)-K).

\(h_w \) : Wind heat transfer coefficient (W/m\(^2\)-K).

\(K \) : Thermal conductivity of the pot (W/m-K).

\(L \) : Length (m), spacing

\(M \) : Mass / Mass of water,(Kg).

\(M_1 \) : Mass of water for BC (Kg)

\(M_2 \) : Mass of water for PCC (Kg)

\(N \) : Number of pots.

\(Nu \) : Nusselt number

\(P \) : Cooking power (Watt)

\(P_s \) : Standard cooking power (Watt)

\(P_T \) : Total gas pressure (kg/m\(^2\))

\(Pr \) : Prandtl number

\(\dot{Q}^* \) : Rate of heat gain or loss /area (W/m\(^2\))

\(\dot{Q}_{in} \) : Energy absorbed (W/m\(^2\))

\(\dot{Q}_L \) : Total heat loss from the cooker (W/m\(^2\))

\(\dot{q}_{f} \) : Rate of heat added to the fluid.

\(S \) : Absorbed radiation per unit area of unshaded aperture (W/m\(^2\)).

\(t \) : Time interval (sec., unless otherwise specified), thickness (meter)

\(t_b \) : Thickness of insulation

\(t_o \) : Decay constant in min.

\(T \) : Temperature (°C)

\(\bar{T}_a \) : Average ambiant température (°C)

\(T_{m12} \) : arithmetic mean temperature of absorber plate and glass cover.

\(T_{m23} \) : arithmetic mean temperature of glass cover 1 and glass cover 2.

\(T_{ps} \) : maximum plate surface temperature. °C

\(T_{px} \) : maximum absorber plate temperature. °C
\(T_{fx} \) : maximum achievable fluid temperature, °C

\(dt \) : Time interval (sec)

\(\Delta T \) : Temperature difference (°C)

\(U \) : heat loss (W/m²)

\(U_L \) : Total heat loss factor.

\(F'\eta_o \) : Optical efficiency factor.

\(F'U_L \) : Overall heat loss factor (W/m²K)

\(\alpha \) : Absorptivity.

\(\beta \) : Collector tilt from the horizontal.

\(\gamma \) : Intercept factor.

\(\varepsilon_g \) : emittance of the glass plate.

\(\varepsilon_p \) : emittance of the absorber plate.

\(\varepsilon_{eff} \) : effective emmissivity

\(\eta \) : Efficiency

\(\eta_c \) : over all cooker efficiency

\(\eta_{opt} \) : optical efficiency

\(\eta_u \) : Utilizable efficiency

\(\eta_{io} \) : instantaneous oven efficiency.

\(\sigma \) : Stefan–Boltzman constant (W/m²K⁴)

\(\tau \) : Time interval, sec, unless otherwise specified, transmittance

\(\tau_o \) : Time constant, hrs, unless otherwise specified

\(\tau_r \) : Time taken to achieve a reference cooking temperature, min (unless otherwise specified)

\(\tau_{hr} \) : Duration of heat retention, min (unless otherwise specified)

\((\tau\alpha) \) : Transmissivity-absorptivity product.

\(\rho \) : Specular reflectance

Subscripts:

\(a \) - air, ambient

\(b \) - bottom

\(c \) - characteristic, cover,

\(c_1 \) - glass cover 1/ cover 1
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_2</td>
<td>glass cover 2/ cover 2</td>
</tr>
<tr>
<td>f</td>
<td>fluid</td>
</tr>
<tr>
<td>g</td>
<td>glass</td>
</tr>
<tr>
<td>i</td>
<td>insulation</td>
</tr>
<tr>
<td>i_0</td>
<td>instantaneous oven</td>
</tr>
<tr>
<td>m</td>
<td>mean value</td>
</tr>
<tr>
<td>opt</td>
<td>optical</td>
</tr>
<tr>
<td>p</td>
<td>absorber plate</td>
</tr>
<tr>
<td>p_1</td>
<td>plate to glass cover</td>
</tr>
<tr>
<td>s</td>
<td>specific, side</td>
</tr>
<tr>
<td>s_{in}</td>
<td>concentrator to oven</td>
</tr>
<tr>
<td>t</td>
<td>top, thickness</td>
</tr>
<tr>
<td>u</td>
<td>utensil, useful, utilizable</td>
</tr>
<tr>
<td>w</td>
<td>water, water vapor, width</td>
</tr>
<tr>
<td>w_{g}</td>
<td>water to glass</td>
</tr>
<tr>
<td>w_1</td>
<td>initial</td>
</tr>
<tr>
<td>w_2</td>
<td>final</td>
</tr>
<tr>
<td>12</td>
<td>glass cover 1 to glass cover 2</td>
</tr>
<tr>
<td>2a</td>
<td>glass cover 2 to ambient</td>
</tr>
</tbody>
</table>