# Table of contents

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Content</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>i-iii</td>
</tr>
<tr>
<td></td>
<td>Declaration by the candidate</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>Certificate of supervisors</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>Certificate of examiner</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>vii-viii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>List of figures</td>
<td>x-xv</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1-27</td>
</tr>
<tr>
<td></td>
<td>1.1. Biomass as Potential Energy Source</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>1.1.1. Biodiesel</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>1.2. Feedstocks for Biodiesel production</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>1.3. Biodiesel production methods</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>1.3.1. Biodiesel synthesis via transesterification</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td>1.3.2. Transesterification mechanism</td>
<td>10-13</td>
</tr>
<tr>
<td></td>
<td>1.3.3. Factors influencing transesterification</td>
<td>13-17</td>
</tr>
<tr>
<td></td>
<td>1.4. Catalysis in transesterification of vegetable oil</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1.4.1. Homogeneous vs. heterogeneous catalysts</td>
<td>18-19</td>
</tr>
<tr>
<td></td>
<td>1.5. Objectives of the research</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>20-27</td>
</tr>
<tr>
<td>2.</td>
<td>Literature Survey</td>
<td>28-54</td>
</tr>
<tr>
<td></td>
<td>2.1. An overview of heterogeneous catalysts used in biodiesel production</td>
<td>30-36</td>
</tr>
<tr>
<td></td>
<td>2.2. Waste shells in biodiesel production</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.2.1. Molluska shell</td>
<td>37-41</td>
</tr>
<tr>
<td></td>
<td>2.2.2. Eggshell</td>
<td>41-44</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>45-52</td>
</tr>
<tr>
<td>3.</td>
<td>Materials &amp; methods</td>
<td>53-64</td>
</tr>
</tbody>
</table>
3.1 Materials

3.2. Catalyst preparation

3.2.1. Solid oxide derived from waste shells of *Turbonilla striatula* 55

3.2.2. Li doped waste shell derived CaO 56

3.2.3. Ba doped waste shell derived CaO 56

3.3. Instrumental analysis 56-57

3.4. Biodiesel production 57-58

3.5. Feedstock analysis 59

3.5.1. Acid value 59

3.5.2. Density 59

3.5.3. Water content 59-60

3.5.4. Saponification value 60

3.5.5. Iodine value 60-61

3.5.6. Carbon residue 61

3.6. Biodiesel analysis 61

3.6.1. HAAKE Falling Ball Viscometer Type C 61-62

3.6.2. Flash point 62

3.6.3. Calorific value 63

3.6.4. Cloud point 63

3.6.5. Carbon residue 63

3.6.6. Density 63

References 64

4. Results & Discussion 65-117

Chapter 4 A Solid oxide derived from waste shells of *Turbonilla striatula* 66-86

4.1. Feedstock analysis 66-67

4.2. Catalyst Characterization 67

4.2.1. X-Ray Diffraction (XRD) analysis 67-68

4.2.2. Scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis 68-70

4.2.3. Fourier transform infrared spectroscopy (FTIR) 70-71
4.2.4. Thermogravimetric — Differential scanning calorimeter (TGA-DSC) analysis 71-73
4.2.5. Surface and pore volume analysis 73-74
4.3. GC analysis of the Biodiesel components 74-75
4.4. Influence of different parameters on transesterification 76
4.4.1. Influence of reaction time 76
4.4.2. Influence of shell calcination temperature 76-77
4.4.3. Influence of methanol to oil ratio 77
4.4.4. Influence of reaction temperature 78
4.4.5. Influence of catalyst amount 78-79
4.4.6. Reusability of the catalyst 79-80
4.5. Conclusions 80
4.6. Comparative study of catalytic activity of prepared catalysts with conventional catalysts 81
4.6.1. Catalytic activity based on amount of the three catalysts 81-82
4.6.2. Influence of methanol to oil ratio on catalytic activity 82-83
4.6.3. Influence of reaction time and reaction temperature 83
4.6.4. Reusability of T-CaO and Lab CaO 84-85
4.7. Fuel properties of biodiesel 85-86
4.8. Conclusions 86
Catalyst 4 B Li doped waste shell derived CaO 87-97
4.9. Catalyst characterization 87-88
4.9.1. X-Ray Diffraction (XRD) analysis 87-88
4.9.2. Fourier transform infrared spectroscopy (FTIR) analysis 88-89
4.9.3. BET analysis and basicity of the catalyst 89
4.9.4. Scanning electron microscope (SEM) analysis 90
4.10. Influence of different parameters on catalytic activity 91
4.10.1. Influence of Li doping 91
4.10.2. Influence of catalyst amount 91-92
4.10.3. Influence of methanol to oil ratio 92-93
4.10.4. Influence of reaction temperature 93-94
4.10.5. Influence of reaction time 94-95
4.10.6. Reusability study 95-96

4.11. Fuel properties of biodiesel 96

4.12. Conclusions 97

Chapter 4C Ba doped waste shell derived CaO 98-110

4.13. Catalyst characterization 98

4.13.1. X-Ray Diffraction (XRD) analysis 99-100
4.13.2. Fourier transform infrared spectroscopy (FTIR) analysis 100-102
4.13.3. Scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis 102-103

4.13.4. Basicity and surface area 103

4.14. Influence of different parameters on catalytic activity 103

4.14.1. Influence of Ba loading 103
4.14.2. Influence of catalyst amount 104
4.14.3. Influence of Reaction time 105
4.14.4. Influence of methanol/oil ratio 105-106
4.14.5. Influence of reaction temperature 106-107
4.14.6. Reusability study 107-109

4.15. Fuel properties of biodiesel 109-110

4.16. Conclusions 110

Chapter 4D Biodiesel studies by Nuclear magnetic resonance (NMR) spectroscopy 111-117

4.17. $^1$H NMR analysis 111
4.18. $^{13}$C NMR analysis 111

References 116-117

Chapter 5 Summary and conclusion 118-119

List of Publications

List of publication in conference proceedings

List of Conferences and Workshops attended