CONTENTS

Acknowledgement X-XI
List of Abbreviations XII-XIII
INTRODUCTION 1-8
OBJECTIVES OF THE RESEARCH 9-10
LITERATURE REVIEW 11-61

CHAPTER 1:

In vitro regeneration of Anthurium andraeanum with special emphasis on organogenesis and somatic embryogenesis.

I.1 Introduction 62
I.2 Materials and Methods 66
I.2.1 Plant material 66
I.2.2 Culture medium 66
I.2.2.1 Basal media for tissue culture 66
I.2.2.2 Macro and micro nutrients 67
I.2.2.3 Vitamins 69
I.2.2.4 Carbon source 69
I.2.2.5 Plant growth regulators (PGRs) 69
I.2.2.6 Stock solutions for basal media salts 69
I.2.2.7 Media preparation and Inoculation of explants in culture medium 70
I.2.2.8 Culture condition 71
I.2.3 In vitro propagation of Anthurium andraeanum from leaf explants via Direct and Indirect Somatic Embryogenesis 71
I.2.3.1 Explant preparation and surface sterilization 71
I.2.3.2 Induction and maturation of Direct Somatic Embryos from leaf explants 71
I.2.3.3 Induction and maturation of Indirect Somatic Embryos from leaf explants 72
CHAPTER 2:

Profiling of *in vitro* culture-induced variation in *Anthurium andraeanum* plants regenerated via direct and indirect somatic embryogenesis and sub-cultured plants by using RAPD and ISSR markers:

II.1 Introduction 125

II.2 Materials and Methods 127

II.2.1 Plant material 127

II.2.2 Genomic DNA extraction and purification 128

II.2.2.1 Preparation of Chemicals Required for DNA Isolation 128

II.2.2.2 CTAB method of DNA extraction 129

II.2.3 Qualitative and quantitative assessment of extracted genomic DNA 131

II.2.4 Solution for gel electrophoresis 131

II.2.5 RAPD and ISSR analysis of invitro regenerated clones of *Anthurium andraeanum* 133

II.2.6 Data analysis 136

II.3 Results 137

II.3.1 Assessment of genetic fidelity of in vitro regenerants derived from Direct Somatic Embryogenesis of *Anthurium andraeanum* cv. Fantasia using molecular markers (RAPD & ISSR) 137

II.3.1.1 RAPD analysis of regenerants 137

II.3.1.2 ISSR analysis of regenerants 138

II.3.2 Assessment of genetic fidelity of in vitro regenerants derived from Indirect Somatic Embryogenesis of four cultivars of *Anthurium andraeanum* using molecular markers (RAPD & ISSR) 140

II.3.2.1 Genetic fidelity assessment of Cancan through RAPD and ISSR marker 140

II.3.2.2 Genetic fidelity assessment of Midori through RAPD and ISSR marker 142

II.3.2.3 Genetic fidelity assessment of Fantasia through RAPD and ISSR marker 144

II.3.2.4 Genetic fidelity assessment of Tinora through RAPD and ISSR marker 147

II.3.3 Determination of Genetic variability among different generations of in vitro propagated plantlets of Cancan and Midori through molecular marker techniques
(RAPD and ISSR)

II.3.3.1 Genetic variability among different generations of in vitro propagated plantlets of Cancan

II.3.3.2 Genetic variability among different generations of in vitro propagated plantlets of Midori

II.4 Discussion

II.5 Conclusions

CHAPTER 3:

Agrobacterium tumefaciens mediated genetic transformation of Anthurium andraeanum cv. Midori:

III.1 Introduction

III.2 Materials and Methods

III.2.1 Plant Material

III.2.2 Bacterial strains and plasmid Vector

III.2.3 Growth of Bacterial cells

III.2.4 Plasmid DNA purification

III.2.5 Heat shock transformation of E. coli cells with pBI121

III.2.6 Mobilization of pBI121 vector into Agrobacterium strain LBA4404 by Fridge Thaw method

III.2.7 Determination of antibiotic sensitivity

III.2.8 Experimental design for optimization of transformation

III.2.9 Agrobacterium mediated transformation

III.2.10 Regeneration of transgenic Anthurium andraeanum and plant recovery

III.2.11 Histo-chemical analysis of β-glucuronidase activity

III.2.12 Molecular analysis

III.2.13 Statistical analysis

III.3 Results
III.3.1 Determination of phytotoxic levels of selective and bactericidal Antibiotics 182
III.3.2 Optimization of transformation parameters 185
III.3.2.1 Effect of Pre-Culture period 187
III.3.2.2 Effect of Infection Time on Survival with Selection 187
III.3.2.3 Effect of Co-cultivation Period on Transformation Efficiency 187
III.3.2.4 Effect of acetosyringone concentration 188
III.3.3 Genetic transformation and regeneration of transformed *Anthurium andraeanum* 188
III.3.4 Histo-chemical GUS assay 188
III.3.5 Molecular analysis 190
III.4 Discussion 191
III.5 Conclusions 196
Summary 197-207
References 208-262