Chapter I: Introduction

1.1 General Background
1.2 Porous Materials
1.3 TiO₂
 1.3.1 Phases of Titanium dioxide
 1.3.2 Reducible Nature of TiO₂
 1.3.3 Semiconducting Nature of TiO₂
 1.3.4 Titania Modification
1.4 Catalysis
 1.4.1 Oxidation reactions
 1.4.2 Photocatalysis
 1.4.3 Hydrogen Generation via Water Splitting
 1.4.4 Solar Cell
1.5 Objective of Thesis
1.6 Outline of Thesis
1.7 References

Chapter II: Theory and Experimental Procedures

2.1 Catalyst Preparation Method
 2.1.1 Solution Combustion Method
 2.1.2 Reduction Method
 2.1.3 Incipient Wet Impregnation Method
2.2 Catalytic Activity Studies
 2.2.1 Sulfide Oxidation
 2.2.2 Oxidative Dehydrogenation
 2.2.3 Hydrogen Production via Water Splitting
 2.2.4 Solar Cell Fabrication
2.3 Physiochemical Characterization Methods
 2.3.1 Introduction
2.3.2 Theory and Experimental Procedures
2.3.2.1 X-ray Diffraction
2.3.2.2 Nitrogen Physisorption
2.3.2.3 UV-Visible Spectroscopy
2.3.2.4 DRIFTs
2.3.2.5 Raman Spectroscopy
2.3.2.6 X-Ray Photoelectron Spectroscopy
2.3.2.7 Transmission Electron Microscopy
2.3.2.8 Energy Dispersive Analysis of X-rays
2.3.2.9 Thermo Gravimetric Analysis
2.3.2.10 Linear Sweep Voltammetry
2.3.2.11 Chronoamperometry
2.3.2.12 Photoluminescence
2.3.2.13 JV plot
2.3.2.14 Electrochemical Impedance Spectroscopy

2.4 Conclusion

2.5 References

Chapter III: Disordered mesoporous $V_xTi_{1-x}O_2$ system for ambient oxidation of sulfides to sulfoxides

3.1 Introduction

3.2 Results and Discussion
3.2.1 X-Ray Diffraction
3.2.2 Energy Dispersive Analysis of X-rays
3.2.3 Raman Spectroscopy
3.2.4 Transmission Electron Microscopy
3.2.5 Nitrogen Physisorption

3.3 Catalytic Activity Study
3.3.1 Effect of Composition
3.3.2 Effect of Temperature
3.3.3 Recycle Studies
3.4 Conclusions
3.5 References

Chapter IV: A green chemistry approach to styrene from ethylbenzene and air on Mn\textsubscript{x}Ti\textsubscript{1-x}O\textsubscript{2} catalyst

4.1 Introduction
4.2 Results and Discussion
 4.2.1 X-ray Diffraction
 4.2.2 Transmission Electron Microscopy
 4.2.3 Raman Spectroscopy
 4.2.4 X-Ray Photoelectron Spectroscopy
 4.2.5 Scanning Electron Microscopy
 4.2.6 Nitrogen Physisorption
4.3 Catalytic Activity Studies
 4.3.1 Effect of Composition
 4.3.2 Effect of Oxygen Flow
 4.3.3 Effect of Air Flow
 4.3.4 Effect of Reaction Temperature
 4.3.5 Effect of EB Flow Rate
 4.3.6 Catalyst Stability
4.4 Spent Catalyst Analysis
 4.4.1 Powder XRD
 4.4.2 Raman Spectra
 4.4.3 Thermogravimetric Analysis
 4.4.4 TEM-SEM
4.5 Mechanism for the reaction
 4.5.1 ODH with Mn\textsubscript{3}O\textsubscript{4} Supported on TiO\textsubscript{2}
 4.5.2 Mars-van Krevelen (MvK) Mechanism
4.6 Conclusions
4.7 References
Chapter V: Synthesis Characterization and Photocatalytic Studies of H-TiO₂ Materials

5.1 Introduction

5.2 Results and Discussion
 5.2.1 X-ray Diffraction
 5.2.2 Raman Spectroscopy
 5.2.3 X-ray Photoelectron Spectroscopy
 5.2.4 UV-Visible Spectroscopy
 5.2.5 Photoluminescence
 5.2.6 Nitrogen Physisorption
 5.2.7 Linear Sweep Voltammetry

5.3 Solar Harvesting Techniques
 5.3.1 Water Splitting Studies for Hydrogen Production
 5.3.2 Dye Sensitized Solar Cell Studies

5.4 Conclusions

5.5 References

Chapter VI: Conclusions and Future Outlook

List of Publications