Chapter IV: A Green Chemistry

Approach to Styrene from Ethylbenzene and Air on Mn\textsubscript{x}Ti\textsubscript{1-x}O\textsubscript{2} Catalyst
4 Mn$_x$Ti$_{1-x}$O$_2$

4.1 Introduction

Styrene (ST) is one of the important products in the petrochemical and polymer industries and is a precursor to several resins, plastics, rubbers and other copolymers [1]. Since 1940’s, the industrial production of ST has been done using iron oxide promoted by potassium catalysts, by the dehydrogenation of ethylbenzene (EB) with steam, at 700 °C [2, 3]. This dehydrogenation mechanism [4, 5] is endothermic ($\Delta H = 124.9$ kJ mol$^{-1}$) in nature and hence it requires high reaction temperature. Although hydrogen is available as a side product, steam-based processes utilize a large amount of latent heat and they have thermodynamic limitations [6]. In addition, coke formation on the catalyst leads to severe catalyst deactivation, and EB conversion of less than 16% was achieved per pass [7].

Different materials have been used for ST synthesis, such as, metal oxides, carbon. Makkee et al. used Al$_2$O$_3$ calcined between 500 and 1200 °C, and achieved 42% EB conversion and 87% ST selectivity at 475 °C for 62 h [8]. Qui et al. employed ozonated multiwalled carbon nanotube (MWCNT) in range of 350–450 °C at atmospheric pressure, O$_2$/EB molar ratio varied from 1:1 to 3:1 with best EB conversion and ST selectivity values of 80% and 92%; however, above high activity occurs at a very low low rate of 2.3 mL vol% in 55 mL min$^{-1}$ of EB + O$_2$ + N$_2$ [9]. Sekine et al. used pervoskite and reactions were conducted at 510 or 540 °C at atmospheric pressure in the presence of steam; molar ratio of steam to EB was 2 or 12 with 22% ST yield for 30 min [10]. Venugopal et al. has shown ceria containing hydrotalcite at 450 °C at atmospheric pressure a marginally decreasing styrene yield from 47 to 45% over a period of 72 h [11]. Shin et al. fed a balancing gas of water and EB in helium, over V$_2$O$_5$/CeO$_2$–MgO and achieved EB conversion of 43% and ST selectivity of 91% at 600 °C; prior to the activity measurement, the catalyst was activated in the steam low of 50 mL min$^{-1}$ by heating up to 650 °C at the rate of 2.5 °C min$^{-1}$ [12]. Sivaranjani et al. employed V-doped titania with molecular oxygen at 500 °C and obtained about 50% ST yield initially; however it continuously decreases at higher time on stream [13]. Various oxidants such as O$_2$, [13, 14] air, [15] N$_2$O [16] and CO$_2$ [17] have been used, and indeed, air as oxidant is cost effective and preferred green way of oxidation. Above literature reports demonstrates the wide open area of
styrene synthesis with better and sustainable yield. Design of catalysts which are stable, gives high selectivity (>90%) with conversion >50% for EB to ST conversion at lower temperatures around 500 °C or lower is one of the challenge in the field of heterogeneous catalysis [8–18]. Constant efforts have been made to develop catalysts, operating via oxidative dehydrogenation (ODH) mechanism route which is also exothermic in nature [19] to lower operating temperature for EB to ST conversion [20, 21].

Manganese is known for its superior catalytic properties for various redox processes in heterogeneous catalysis. MnOx supported on silica have been also used for EB to ST conversion [22]. Titania is known as excellent reducible catalytic support, but limited with low surface area. Nonetheless, disordered mesoporous materials [23] with pseudo-three-dimensional (p3D) nature have smaller diffusion lengths [24, 25] thus reactants and products can easily diffuse to and from the active sites of disordered mesoporous materials, which increases the selectivity and yield of the preferred product by decreasing the secondary reactions and hence the overall rate of the reaction. For the present manuscript, we have synthesized large surface area Mn-doped titania (MnₓTi₁₋ₓO₂) catalysts via solution combustion method [26–29]. We used MnₓTi₁₋ₓO₂ materials for EB to ST conversion in a fixed-bed reactor. These catalysts were evaluated between 430 and 570 °C for ST synthesis from ET using air or oxygen as an oxidant. Present disordered mesoporous MnₓTi₁₋ₓO₂ materials exhibits about 57% ST yield with high selectivity (>95%) under optimized conditions for long durations without undergoing deactivation under reaction condition. The current report is a part of ongoing investigations from our group towards broad understanding of metaloxide catalysts for oxidation and ODH heterogeneous catalytic reactions [30–38].

4.2 Results and Discussion

4.2.1 X-ray Diffraction

To understand structural features of the materials wide and low angle powder X-ray diffraction (XRD) were recorded for MnₓTi₁₋ₓO₂ materials. XRD results shown in Fig. 1 exhibits diffraction features of 101, 004, 200 and 204 facets of anatase phase of titania present in MnₓTi₁₋ₓO₂ materials. Diffraction pattern is indexed to JCPDS file no.: 21-1272, 21-1276 for anatase phase of titania with small amount of rutile phase.
About 2–9 % of rutile phase, (6.2 for TiO$_2$, 3.8 for MT2, 8.7 for MT5, 5.8 for MT7, 7.9 for MT10, 6.8 for MT12 and 2.1 for MT15) was also observed (# mark in Fig. 1) along with predominant anatase phase in the fresh catalysts. No manganeseoxide diffraction peaks were observed up to 15% of Mn content; indicating high dispersion of manganese ions into TiO$_2$ lattice. Broad peaks indicate the nanocrystalline nature of the catalysts. Crystallite size was calculated using Debye–Scherrer equation for all materials and shown in Table 1. Low angle XRD recorded for all xMT materials show a single broad peak between $2\theta = 0.8$ and 1.3° (Fig. 1 – inset) indicating a disordered mesoporous nature of materials.

Figure 1. Wide angle XRD patterns recorded from Mn$_x$Ti$_{1-x}$O$_2$ catalysts with different Mn content up to 15 atom %. XRD of TiO$_2$ prepared by SCM is also shown for comparison. Low angle XRD pattern is given in the inset indicates the disordered mesoporosity.
4.2.2 Transmission Electron Microscopy

Transmission electron microscopic images recorded are given for representative xMT materials in Fig. 2. TEM images exhibit particles with spherical morphology of 7–8 nm size, with high porosity associated with Mn$_x$Ti$_{1-x}$O$_2$ materials. It is to be underscored that present set of disordered mesoporous materials were prepared without any surfactant or template molecules, compared to ordered mesoporous materials [41–43] that employ molecules like P123 copolymer, CTAB etc. as surfactant. HRTEM images exhibits d spacing for various planes of TiO$_2$. Selected area electron diffraction (SAED) patterns were recorded and shows predominantly 101 plane of anatase phases of titania. Similar porous structure was observed for TiO$_2$, 7MT and 12MT.

![TEM images showing Mn$_x$Ti$_{1-x}$O$_2$ materials](image)

Figure 2. TEM image of (a) 2MT, (b) 5MT, (c) 10MT and (d) 15MT materials are shown; SAED pattern is shown in inset. Spherical morphology of TiO$_2$ with (101) facets were found to be predominantly present, for all Mn$_x$Ti$_{1-x}$O$_2$ materials.
4.2.3 Raman Spectroscopy

Raman spectral analysis of xMT materials are shown in Fig. 5. Typical vibrational features of anatase was observed at 145 (Eg), 198 (Eg), 398 (B1g), 516 (A1g +B1g) and 640 (Eg) cm\(^{-1}\). There is shift in position of peak from 145 to 159 cm\(^{-1}\) with an increase in Mn-content in xMT materials. Intensity of all typical features decreased drastically due to Mn incorporation into the titania lattice. The above decrease in the intensity of Raman features is due to the symmetry breaking of Ti–O–Ti by Ti–O–Mn structural features due to incorporation of Mn-ions in TiO\(_2\). XRD and TEM analysis reveals no change in crystallinity and morphology of Mn\(_x\)Ti\(_{1-x}\)O\(_2\) materials compared to that of pure TiO\(_2\). Albeit its small percent of rutile phase (Fig. 1), the same was observed with few compositions prominently (5MT) in Fig. 3.

![Raman Spectra](image.png)

Figure 3. Raman spectra for xMT materials, multiplied with suitable factors for clarity. No manganese oxide feature was observed up to 15% Mn loading, and
broadening of peaks on Mn-doping indicating the symmetry breaking of regular Raman features of anatase phase. Note the blue shift in E_g from 145 on TiO$_2$ (dashed line) to 159 cm$^{-1}$ along with line broadening upon Mn introduction into the titania lattice. Rutile phase features are indicated by two dotted arrows.

4.2.4 X-Ray Photoelectron Spectroscopy

Electronic structure of xMT materials was explored via X-ray photoelectron spectroscopy of all xMT materials. Fig. 4 shows XPS spectra of Ti2p, and Mn2p (inset) core level spectra of xMT materials. Ti2p3/2 core level appears at a binding energy (BE) around 459 eV for all xMT materials. This is in good agreement with the BE reported for Ti$^{4+}$ in literature reports [44]. BE of Mn2p3/2 and O1s (not shown) core levels appear around 641.3 ± 0.1 and 529 ± 0.2 eV, respectively, for all Mn$_x$Ti$_{1-x}$O$_2$ materials. Observed BE of Mn2p3/2 core level around 641.3 eV for all xMT materials indicate the oxidation state of Mn to be 3+ [45, 46].

![Figure 4. XPS of Ti2p and Mn2p (inset) core levels of xMT materials.](image)
BE of Mn$^{4+}$ state was reported to appear at 642.5 eV, which is significantly higher than the BE in XPS spectra, confirming that Mn is not present in 4$^+$ oxidation state in xMT materials. A comparison of ionic sizes of Ti$^{4+}$ (0.68 Å), Mn$^{3+}$ (0.645 Å) and Mn$^{4+}$ (0.53 Å) also suggest the possibility of Mn$^{3+}$, rather than Mn$^{4+}$ oxidation state. Indeed, Mn$^{3+}$ oxidation states is likely to enhance the lattice oxygen storage/release properties under ODH reaction conditions.

4.2.5 Scanning Electron Microscopy
Elemental mapping of Mn$_x$Ti$_{1-x}$O$_2$ materials were studied to understand the distribution of different elements in the materials. Representative images recorded for different elements from SEM are given in Fig. 5. Manganese and titanium are present and their distribution is shown in yellow and blue colors in separate images, along with the particle image. Homogeneous distribution of Mn in Mn$_x$Ti$_{1-x}$O$_2$ lattice was observed for all compositions. Mn percentage for all Mn$_x$Ti$_{1-x}$O$_2$ materials were measured and shown in Table 1.

Figure 5. (a) SEM image of a 5MT catalyst particle, corresponding elemental mapping of (b) Mn in yellow colour, and (c) Ti in blue colour through EDAX analysis. Results indicate a uniform distribution of Mn in titania.
4.2.6 Nitrogen Physisorption

Textural features of xMT materials were studied via nitrogen adsorption–desorption isotherms and the results are shown in Fig. 6a; Barrett–Joyner–Hallenda (BJH) pore size distribution plots are shown in Fig. 6b. Mesoporous nature of material can be inferred as all materials exhibit type IV adsorption–desorption isotherm with H2 hysteresis loop, which is characteristic of mesoporous materials. Surface area of material was calculated from Brunauer–Emmett–Teller (BET) equation, and shown in Table 1. BJH pore size distribution for xMT materials exhibits bimodal (2MT and 7MT) or unimodal (all compositions except 2MT and 7MT) pore size distribution. xMT materials exhibits average pore diameter of around 3.5 ± 0.5 nm. Calculated pore volume for Mn$_x$Ti$_{1-x}$O$_2$ materials are also shown in Table 1.

![Figure 6](image_url)

Figure 6. (a) N$_2$ adsorption–desorption isotherms, and (b) BJH pore-size distribution of xMT catalysts.
Table 1. Physicochemical properties of Mn$_x$Ti$_{1-x}$O$_2$ catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>bulk Mn Content</th>
<th>BET surface Area (m2/g)</th>
<th>Pore size (nm)</th>
<th>pore volume (cc/g)</th>
<th>crystalline size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>0</td>
<td>125</td>
<td>3.80</td>
<td>0.2281</td>
<td>8.8</td>
</tr>
<tr>
<td>2.0MT</td>
<td>1.38</td>
<td>79</td>
<td>3.89</td>
<td>0.1121</td>
<td>7.4</td>
</tr>
<tr>
<td>5.0MT</td>
<td>4.10</td>
<td>87</td>
<td>2.25</td>
<td>0.1311</td>
<td>8.5</td>
</tr>
<tr>
<td>7.0MT</td>
<td>6.61</td>
<td>101</td>
<td>3.89</td>
<td>0.1513</td>
<td>8.9</td>
</tr>
<tr>
<td>10MT</td>
<td>7.43</td>
<td>110</td>
<td>2.57</td>
<td>0.1811</td>
<td>7.9</td>
</tr>
<tr>
<td>12MT</td>
<td>11.04</td>
<td>102</td>
<td>1.87</td>
<td>0.0874</td>
<td>6.8</td>
</tr>
<tr>
<td>15MT</td>
<td>14.30</td>
<td>104</td>
<td>2.59</td>
<td>0.1917</td>
<td>7.4</td>
</tr>
</tbody>
</table>

4.3 Catalytic Activity Studies

EB to styrene ODH reaction with air or molecular oxygen has been investigated as a probe reaction to investigate the catalytic activity of xMT materials. This is primarily to investigate the influence of Mn$^{3+}$ introduced in TiO$_2$ lattice framework. However, caution must be exercised due to the exothermic nature of the reaction with combustible reactant and products in the presence of air or oxygen. Reactions were carried out at comparatively low temperature, relative to conventional endothermic reaction, [4, 5] and at atmospheric pressure. Various factors such as flow rates of EB, air/oxygen, catalyst composition and temperature were varied to understand their effects on EB conversion and selectivity to styrene.

4.3.1 Effect of Composition

For selective EB conversion to ST, and to minimize the chances of over oxidation of easily combustible EB and ST, active catalytic centers have to be optimized. To find optimum Mn-content for the highest selective oxidation, reactions were carried out with different Mn-content, from TiO$_2$ to 15 mol% Mn into TiO$_2$ lattice. Reaction studies were carried out with xMT materials for 12 h on time on stream (TOS) and at EB flow rate of 1.8 mL h$^{-1}$, and 40 mL min$^{-1}$ O$_2$ flow at 500 °C. Conversion, selectivity and yield values were measured for different xMT and are plotted in Fig. 7. Except TiO$_2$, all xMT catalysts show an increase in ST yield with increase in TOS. TOS data with bare TiO$_2$ is plotted for reference to underscore the effect of Mn content. TiO$_2$ exhibited about 20% ST yield, and 72–82% ST selectivity. With
increase in Mn-content, EB conversion and ST yield also increased. 15MT shows the best ST yield (55%) and 90–95 % styrene selectivity for 12 h, and this catalyst composition shows a sustainable activity for 45 h, which will be discussed later. Although an increase in catalytic activity was observed from TiO₂ to 2MT, with further increasing Mn-content the activity does not increase linearly. 2–10% Mn doped titania shows comparable yield. This suggests the availability of Mn on the surface is limited due to bulk doping in titania lattice. However, a comparison of Mn-content to catalytic activity, indicates the decline in specific activity from 2 to 10% Mn, and then it marginally increases at 12 and 15% Mn. We also caution the readers, to take a note on changes in the catalyst nature in the first few hours from anatase phase xMT to Mn₃O₄ supported on rutile titania (vide infra). Apart from ST, benzene is a main side product (<5%); toluene and styrene oxide are also formed as minor products with selectivity below 2%.

Figure 7. (a) EB conversion, (b) ST yield and (c) selectivity at 500 °C are plotted for xMT compositions. Oxygen and EB flow rate was 40 mL min⁻¹ and 1.8 mL h⁻¹ respectively. 15MT exhibits the highest conversion of EB and yield of ST.
From the above results, it can be inferred that Mn-doped titania centers are the actual catalytic centers for conversion. Selectivity for ST increases with TOS. 12MT, 10MT and 5MT showed gradual increase, 2MT and 7MT showed steady conversion. 15MT exhibits two fold higher yield value than TiO$_2$. 15MT catalyst exhibits better yield than intermediate xMT catalysts. 15MT is the best composition among all the compositions that are evaluated. Any further increase in doping of Mn-content resulted in a mixed phase of Mn$_3$O$_4$ and Mn$_{x}$Ti$_{1-x}$O$_2$ indicating the solid solubility limit of Mn in titania.

4.3.2 Effect of Oxygen Flow

O$_2$ supply was optimized to get the highest ST yield and selectivity. EB flow was fixed at 1.8 mL h$^{-1}$ over fixed bed of 15MT catalysts at 500 °C, and O$_2$ flow was varied at 20, 40 and 60 mL min$^{-1}$ and the reaction was studied. Measured values of conversion, yield and selectivity are plotted for these studies, and the results are shown in Fig. 8. Conversion increased with increase in oxygen flow rates. Styrene yield increased with time due to a gradual increase in EB conversion at 20 mL min$^{-1}$ O$_2$ flow. O$_2$ flow at 20 and 40 mL min$^{-1}$ after 6 h show constant conversion values at 35 and 50 mol%, respectively, indicating the steady state attained in 5–6 h. However, 60 mL min$^{-1}$ O$_2$ flow shows a constant yield at 45 mol%; nevertheless, 60 mL min$^{-1}$ O$_2$ flow shows a steadily declining (increasing) selectivity (conversion). At the end of 12 h, 60 mL min$^{-1}$ O$_2$ flow exhibits 48% EB yield, and 72% styrene selectivity; in contrast, at 15 h on TOS, conversion decreased to 21% indicating the onset of deactivation (result not shown). EB conversion increases from 25 to 35 mol% with 20 mL min$^{-1}$ O$_2$ flow in the initial hours indicating a possibility of restructuring of catalyst in the transient state. 40 mL min$^{-1}$ O$_2$ flow was observed to an optimum rate for high ST yield. Benzene formed as side product along with toluene and styrene oxide with less than 1% selectivity. It is also to be mentioned that the gas product analysis demonstrating the formation of significant amount of CO$_2$ suggesting the combustion of reactant and/or product, especially at high oxygen flow (Fig. 8).
Figure 8. Effect of oxygen flow on catalytic activity is shown for 20, 40 and 60 mL min\(^{-1}\) flow. EB flow rate was maintained at 1.8 mL h\(^{-1}\) over fixed bed of 15MT catalysts at 500 °C.

4.3.3 Effect of Air Flow

O\(_2\) was replaced by air to minimize the explosion hazard. Air contains diluted oxygen (21%), and hence a higher flow rate is required to simulate the equivalent amount of oxygen used in the results shown in Fig. 7 and 8. Due to diluted O\(_2\) better activity and ST selectivity was expected. Studies at different air flow rates were carried out to understand the effect of air flow. Air flow at 60, 120, 180 and 240 mL min\(^{-1}\) were carried out at fixed EB flow rate of 1.8 mL h\(^{-1}\) over 15MT at 530 °C, and the results are shown in Fig. 9. With 60 mL min\(^{-1}\) flow there is a steady ST yield at 19%; however, the yield increased steadily at 120 and 180 mL min\(^{-1}\) flows. However, yield decreases at 240 mL min\(^{-1}\), due to facile combustion of EB and ST too, towards CO\(_2\) and water. With increase in flow rates the ST yield increases and the optimum yield was obtained at an air flow rate of 180 mL min\(^{-1}\). 180 mL min\(^{-1}\) air flow exhibit 57% ST yield >9 h with 95% selectivity. A gradual increase in conversion and yield was observed in the first eight hours of reaction at 120 and 180 mL min\(^{-1}\) flow indicating a
possible change in the nature of catalyst. Air flow exhibits higher selectivity for ST compared to \(\text{O}_2 \) low, always above 95%. Mainly benzene is formed (<3%) as a side product.

![Figure 9](image.png)

Figure 9. Air flow rate at 60, 120, 180 and 240 mL min\(^{-1}\) were evaluated. EB at 1.8 mL h\(^{-1}\), and air at 180 mL min\(^{-1}\) flow rate on 15MT catalyst at 530 °C gives the highest ST yield.

4.3.4 Effect of Reaction Temperature

Temperature plays a significant factor for EB to ST conversion. Although EB conversion increases with increase in reaction temperature, above an optimum temperature, combustion is favored due to favorable oxidizing conditions; this tends to decrease the ST yield. To optimize temperature for ST yield, reactions were carried out between 440 and 570 °C at 180 mL min\(^{-1}\) air flow rate. Measured EB conversion, styrene yield and selectivity values for above reactions are plotted in Fig. 10. Generally, conversion increases with increasing reaction temperature. 530 °C shows optimum temperature for EB to ST conversion. The highest ST yield was observed at 530 °C with ST selectivity at 97%. Conversion values increased marginally even up...
to 12 h for 500 and 530 °C, but steady state was reached at TOS = 5 h at 440 and 470 °C. 570 °C demonstrates a fast increase in conversion up to 8 h, followed by a decline; selectivity was also observed below 90% indicating the increasing contribution from combustion. For all temperatures about 3–5% of side products, such as benzene and toluene are also produced; CO₂ mol% increases from 5 to 10% confirms increasing combustion at higher temperatures (Fig. 10).

Figure 10. Effect of reaction temperature; on activity trend at 1.8 mL h⁻¹ EB flow, and 180 mL min⁻¹ air flow over 15MT catalysts, between 440 and 570 °C. 530 °C shows the optimum results.

4.3.5 Effect of EB Flow Rate

Rate of reactant flow over catalyst bed determines the residence time of substrate thus controls catalysts reactivity, and hence overall product distribution. Effect of EB flow rates over 15MT catalysts bed were studied at air flow rate of 180 mL min⁻¹ at 530 °C. To optimize EB flow, different flow rates of 1.2, 1.8, 3.0 and 4.2 mL h⁻¹ were studied, and the results are shown in Fig. 11. 1.2 mL h⁻¹ EB flow shows EB conversion at 38%; however it deteriorates very fast and no conversion was observed at higher TOS, likely due to coke deposition and hence deactivation of the catalyst. TG-DTA
analysis further confirms the amount of coke was about 10% (result not shown). 1.8 mL h\(^{-1}\) flow exhibits the highest yield of ST; EB conversion increases gradually between 3 and 9 h, and reaches steady state at 9 h and thereafter the reactivity was maintained. Higher flow rates at 3 and 4.2 mL h\(^{-1}\) shows lower, but steady EB conversion, 97–99 % ST selectivity and ST yield for 12 h TOS. ST selectivity observed to be increasing from 90 to 97% at 1.8 mL h\(^{-1}\) EB flow, whereas the same decreases from 90 % at 1.2 mL h\(^{-1}\) EB flow. 1.8 mL h\(^{-1}\) flow rate provides optimum EB flow rate for high ST yield.

Figure 11. EB flow rate studied at 1.2, 1.8, 3.0 and 4.2 mL h\(^{-1}\); with optimized air flow at 180 mL min\(^{-1}\) at 530 °C over 15MT catalysts. 1.8 mL h\(^{-1}\) EB flow shows the highest EB conversion and ST yield.

4.3.6 Catalyst Stability
Optimization studies of reaction parameters for high ST yield were demonstrated earlier and optimum values are 1.8 mL h\(^{-1}\) EB flow, 180 mL min\(^{-1}\) air flow at 530 °C with 15MT catalyst. Possible industrial application of xMT catalyst can be evaluated
by subjecting catalytic studies for longer TOS under the above reaction conditions, to ensure robust nature of material and obtaining constant ST yield. 15MT catalysts stability for longer duration (45 h) was studied, and the results are shown in Fig. 12. EB conversion increases from 45 to 58% at 15 h TOS, and thereafter a steady 58% EB conversion was maintained. ST yield also gradually increased from 41 to 55% and afterwards there is no decrease in ST yield up to 45 h thus demonstrating the sustainable nature of catalyst and reaction. Gradual increase in catalyst activity in the first few hours observed under wide variety of reaction conditions demonstrates a change in the nature of catalyst under reaction conditions towards higher active form of the catalyst. Both conversion and selectivity linearly increases, till the reaction reaches a steady state. ST selectivity during whole steady state was observed to be >95%.

Figure 12. Catalyst stability was evaluated over 45 h; EB flow at 1.8 mL h\(^{-1}\) with optimized air flow at 180 mL min\(^{-1}\) at 530 °C over 15MT catalyst. Catalyst showed steady ST yield for whole duration without undergoing deactivation.
4.4 Spent Catalyst Analysis

After reaction, spent catalysts, those are still active and exhibit the high catalytic activity, were collected and analyzed with various physiochemical techniques, such as XRD, Raman spectroscopy, SEM, TEM, thermogravimetric and differential thermal analysis (TG-DTA). This is mainly to explore the nature of changes that happened to catalysts, especially under transient state conditions which shows an induction period. This is important, since the ODH is known to be an exothermic reaction and local hot spots on the catalyst is likely to occur, which could influence the catalyst.

4.4.1 Powder XRD

Wide angle powder XRD of spent catalysts was analyzed to understand changes in catalysts due to catalytic conversion of EB to ST. For comparison Mn$_3$O$_4$ and 5% Mn$_3$O$_4$ impregnated on TiO$_2$ (5% Mn$_3$O$_4$/TiO$_2$) catalysts powder WXRD were also recorded and shown in Fig. 13. Narrow and high intense peaks due to rutile phase of TiO$_2$ at $2\theta = 27.5$ (110), 36.3 (101), 40.9 (111), 56.8 (211) are observed due to phase change of anatase TiO$_2$ lattice at reaction temperatures. Mn$_3$O$_4$ (JCPDS-ICDD #24-0734) at $2\theta = 37.28$ and 56.90, and MnO(OH) (JCPDS-ICDD #88-0649) (an intermediate phase of Mn$_3$O$_4$), at $2\theta = 23.67$, 32.21, 35.07, 37.28, 39.17, 40.125, 43.932, 60.7, 64.33, 65.45 and 69.57 are also observed due to precipitation of manganese ions from TiO$_2$ lattice due to reaction conditions. Spent catalysts exhibit sharp narrow peaks, hinting a growth of large crystallites due to aggregation. Indeed, rutile phase grow at the cost of anatase phase, and the same is observed up to 10% Mn; MT15 shows complete conversion of anatase to rutile phase. Conversion of anatase to thermodynamically stable phase, [47] underscores the role of exothermic nature of the reaction and its influence in changing the nature of surface and bulk properties of catalyst. Nonetheless, stable catalytic activity observed for 45 h (Fig. 12) suggesting the changes cease to occur under steady state conditions. Thus it can be inferred that catalytic activity is due to Mn$_3$O$_4$ and its intermediate MnO(OH) supported over rutile titania.
Figure 13. Powder XRD of spent catalysts and fresh TiO$_2$, Mn$_3$O$_4$ and 5%Mn$_3$O$_4$/TiO$_2$ are shown. Spent catalysts exhibits features of Mn$_3$O$_4$, MnO(OH) and rutile phase of titania and this is attributed to the exothermic nature of reaction.

4.4.2 Raman Spectra

Raman spectroscopy analyses of spent xMT catalysts were carried out and the results are shown in Fig. 14. All spent catalysts exhibited a predominant rutile phase along with minor anatase phase features of TiO$_2$. TiO$_2$ and 5% Mn$_3$O$_4$/TiO$_2$ catalyst's Raman spectra are given for reference. Spent catalysts exhibits significantly higher intensity compared to fresh catalysts indicating the growth of crystallites to bigger size and hence increase in crystallinity. However, no manganese oxide features appeared in spectra of any catalysts, suggesting a uniform distribution of them on the surface of titania.
Figure 14. Raman spectra of spent catalysts exhibit peaks due to anatase and additional rutile phases of TiO$_2$ supporting XRD results.

4.4.3 TG-DTA

TG-DTA of spent catalysts was measured and the results are shown in Fig. 15. TG plots exhibit weight loss of 1–3% between 200 and 400 °C, and 1–2% weight gain between 500 and 950 °C; this is in addition to the initial weight loss due to water removal below 200 °C. DTA exhibited exothermic peaks, which are due to carbon burning, that was deposited during catalytic reactions over catalysts surface. MT15 catalysts tested for 45 h shows maximum weight loss, highest peak intensity in DTA results indicating the maximum carbon deposition of 3% due to reaction. Other compositions tested for 12 h show approximately the similar amount of weight loss in TGA (Fig. 15a). In spite of some coke deposition, sustainable activity observed with 15MT at 530 °C demonstrates the utilization of air/O$_2$ not only towards ODH reaction, but to minimize the coked deposition. Weight gain at high temperatures is
attributed to the oxidation of manganese oxides to MnO₂. Indeed, a systematic increase in weight gain with increasing Mn-content supports the above.

![Figure 15](image)

Figure 15. TG-DTA results for spent catalysts showed exothermic peaks for coke removal up to 400 °C, weight loss followed by weight gain at 700 °C. Catalysts were initially subjected to the following reaction condition at T = 500 °C; EB flow rate = 1.8 mL h⁻¹; oxygen flow rate = 40 mL min⁻¹ for 12 h on TOS.

4.4.4 TEM-SEM

To understand morphological changes with the catalyst due to reaction, electron microscopy analysis was conducted and the results are shown in Fig. 16. TEM results of spent (5MT) catalyst demonstrate agglomeration to bigger particles, compared to virgin 5MT (Fig. 2b). SEM images show random morphology, with micron size aggregates. TEM and SEM results are further supported by XRD analysis of spent
catalysts (Fig. 13) exhibiting sharp peaks due to bigger agglomerated particles of spent catalyst.

Figure 16. (a) TEM, and (b) SEM image of spent 5MT catalyst. Compared to the TEM results shown in Fig. 2, particle agglomeration is evident. Scale bar length is 50 nm for panel (a).

4.5 Mechanism For The Reaction

4.5.1 ODH with Mn$_3$O$_4$ Supported on TiO$_2$

In view of the above findings with spent catalysts, few control experiments were carried out with Mn$_3$O$_4$ supported on anatase phase TiO$_2$. Representative result is given in Fig. 17 for 5% Mn$_3$O$_4$ loaded on TiO$_2$ by wet impregnation method and EB to ST conversion was carried out under optimized conditions of 180 mL air per min, EB flow of 1.8 mL h$^{-1}$ at 530 °C. Comparable ST yield observed in Fig. 7 for 5MT and Fig. 17 demonstrates the active nature of catalyst is the same in both cases. In fact, the spent catalyst analysis results are in good correlation with that of 5MT results shown in Fig. 13 and 14. It is also to be noted that the change in conversion and selectivity in Fig. 7 and 17 indicates the role of gradual change in interaction between Mn$_3$O$_4$ and titania and the conversion of anatase to rutile phase of titania. Although textural properties of nanocrystalline xMT and relatively bigger size particle of Mn$_3$O$_4$ on titania varies to a significant extent, they exhibit comparable catalytic activity indicating the minor role of textural properties for the reaction.
Figure 17. 5% Mn$_3$O$_4$ supported on TiO$_2$ evaluated for EB to ST under optimized condition with air.

4.1.1 Mars-van Krevelen (MvK) Mechanism

Kinetics and mechanism of the reaction determines the rate and distribution of products for any catalysis reaction. Different physiochemical and analytical tools helps to understand the above aspects of catalysis. In the present case, the role of lattice oxygen of xMT catalyst was explored by measuring the ODH reaction in the absence and presence of oxygen/air and a representative result is shown in Fig. 18. Surprisingly, 15MT exhibited catalytic activity of about 15% EB conversion and styrene selectivity of 95%, even in the absence of oxygen/air.

A decrease in conversion was observed from the initial 16% conversion to 14% at TOS = 8–9 h. In contrast to the general expectation of steep decline in activity in the first few hours, sustenance of catalytic activity indeed indicates the supply of lattice oxygen towards the ODH reaction. After demonstrating the sustenance of reaction for nine hours, the catalyst was calcined in oxygen (20 mL min$^{-1}$ flow rate) at
530 °C, and EB conversion was continued with oxygen flow. An immediate jump in conversion from 14 to 35 % in the next three hours, indeed, demonstrates the sustainability of the catalyst system and ODH reaction. Above all, this observation demonstrates the lattice oxygen role in ODH reaction. This clearly indicates xMT catalysts do follow Mars–van Krevelen (MvK) mechanism [48, 49] for EB to ST conversion.

4.2 Conclusions
Manganese incorporated in disordered mesoporous nanocrystalline titania catalysts were synthesized by simple solution combustion method. Mn$_x$Ti$_{1-x}$O$_2$ materials were characterized via XRD, EDX, Raman spectroscopy and HRTEM techniques. Mn$_x$Ti$_{1-x}$O$_2$ catalysts were evaluated for EB to ST conversion by ODH route. The green chemistry approach using air or O$_2$ as oxidant was adopted and also it's more economical and safer approach for the conversion. Optimum air flow and EB flow for EB to ST conversion was found to be 180 mL min$^{-1}$ and 1.8 mL h$^{-1}$, respectively, with
15MT composition exhibiting the highest and sustainable activity at optimum reaction temperature of 530 °C. Robust and sustainable nature of the catalyst was demonstrated by activity for 45 h. Conversion temperature is lowered for ST synthesis with high and sustainable yield. Catalyst is stable and active for long period of time. Mn\textsubscript{x}Ti\textsubscript{1-x}O\textsubscript{2} materials operate via Mars–van Krevelen mechanism as confirmed by catalytic studies in absence/presence of oxygen.

Spent catalyst analysis shows that active phase of catalyst is Mn\textsubscript{3}O\textsubscript{4} supported over rutile TiO\textsubscript{2}. Indeed, there is a structural change occurs from anatase to rutile in the first few hours of reaction, due to exothermic nature of reaction. Nonetheless, the sustainable activity observed for 45 h demonstrates the importance of thermodynamically stable rutile phase as support with Mn\textsubscript{3}O\textsubscript{4} as the active catalyst. Compared to the systems reported in the literature, [8–21] Mn\textsubscript{3}O\textsubscript{4} supported over rutile TiO\textsubscript{2} is attractive, especially in terms of stability, and yield.

4.3 References

