Chapter I

PRELIMINARIES

Definition 1.1

Let \(V = \{v_1, v_2, v_3, \ldots\} \) be a set and \(E = \{e_1, e_2, e_3, \ldots\} \) be another set such that each \(e_i \) is an unordered pair of elements of \(V \) so that \(e_i = (v_i, v_j) = (v_j, v_i) \) for some \(i \) and \(j \). Then the ordered pair \(G = (V, E) \) is called a graph. The elements of \(V \) are called the vertices or points and the elements of \(E \) are associated with vertices.\(e_i \).

Definition 1.2

Two vertices \(v_i \) and \(v_j \) of a graph \(G \) are said to be adjacent if there is an edge joining \(v_i \) and \(v_j \). Two edges \(e_i \) and \(e_j \) are said to be adjacent if they have a common end vertex.

Definition 1.3

An edge with identical ends is called a loop or self-loop.

Definition 1.4

Edges having the same end vertices are called multiple edges or parallel edges. Edges with distinct ends are called links.

Definition 1.5

A graph that has neither loops nor multiple edges is called a simple graph.
Definition 1.1

Let $V = \{ v_1, v_2, v_3, \ldots \}$ be a set and $E = \{ e_1, e_2, e_3, \ldots \}$ be another set such that each e_k is an unordered pair of elements of V so that $e_k = (v_i, v_j) = (v_j, v_i)$ for some i and j. Then the ordered pair $G = (V, E)$ is called a graph. The elements of V are called the vertices or points and the elements of E are called the edges or lines. The vertices v_i, v_j associated with e_k are called the end vertices of e_k or simply ends of e_k.

Definition 1.2

Two vertices v_i and v_j of a graph G are said to be adjacent if there is an edge joining v_i and v_j. Two edges e_i and e_j are said to be adjacent if they have a common end vertex.

Definition 1.3

An edge with identical ends is called a loop or self-loop.

Definition 1.4

Edges having the same end vertices are called multiple edges or parallel edges. Edges with distinct ends are called links.

Definition 1.5

A graph that has neither loops nor multiple edges is called a simple graph.
Definition 1.6

A graph with a finite number of vertices as well as a finite number of edges is called a \textit{finite graph} otherwise it is an \textit{infinite graph}.

Definition 1.7

If v_i and v_j are the ends of the edge e_k, then we say that e_k is \textit{incident} on v_i and v_j.

Example

Consider the graph shown in figure 1.1

![Graph Diagram](image)

\textbf{Figure 1.1}

Figure 1.1 is a graph with 6 vertices and 10 edges. e_2 is a loop. e_7 and e_8 are parallel edges. e_6 and e_9 are adjacent. e_6 is a link.

Definition 1.8

The number of edges incident on a vertex v_i (with self-loop counted twice), is called the \textit{degree} of the vertex v_i and is denoted by $d(v_i)$.
Example

In figure 1.1, \(d(v_1) = 4; d(v_2) = 5 \) and so on.

Definition 1.9

A graph in which all the vertices are of equal degree is called a \textit{regular graph}.

Definition 1.10

A vertex of degree zero is called an \textit{isolated vertex}.

Definition 1.11

A vertex of degree one is called a \textit{pendant vertex} and the corresponding edge is called a \textit{leaf}.

Example

In figure 1.2, vertex \(v_2 \) is a pendant vertex. Vertex \(v_5 \) is an isolated vertex.

Definition 1.12

A graph \(G \) with \(p \) vertices and \(q \) edges is called \((p,q)\)-graph where \(p \) is called the \textit{order} of the graph and \(q \) is called the \textit{size} of the graph \(G \).
Definition 1.13

A (p,q)-graph with \(p \neq 0, q = 0 \) is called a vertex graph and is denoted by \(\varphi \).

Definition 1.14

A (p, q)-graph with \(p = q = 0 \) is called a null graph or an empty graph and is denoted by \(\phi \).

Example

![Figure 1.3](image)

A vertex graph with 5 vertices is shown in figure 1.3.

Definition 1.15

Two graphs \(G \) and \(G' \) are said to be isomorphic to each other if there is a one to one correspondence between their vertices and between their edges such that the incidence relationship is preserved.
Example

The graphs G and H given in figure 1.4 are isomorphic.

Definition 1.16

A graph H is said to be a subgraph of a graph G if all the vertices and all the edges of H are in G.

Example

Figure 1.4

Figure 1.5 (a)
Graphs given in Figure 1.5(b) and 1.5(c) are subgraphs of the graph in Figure 1.5(a).

Definition 1.17

Two subgraphs of a graph are said to be *edge disjoint* if they have no edges in common. Similarly two subgraphs of a graph are said to be *vertex disjoint* if they have no vertex in common.

Example

The two subgraphs given in figure 1.5(b) and 1.5(c) are edge disjoint subgraphs of the graph given in figure 1.5(a).

Definition 1.18

Let \(G = (V, E) \) be any graph. Let \(V_1 \) be a non-empty subset of the vertex set \(V \). The subgraph of \(G \) with vertex set \(V_1 \) and edge set as the set of those edges of \(G \) have both ends in \(V_1 \) is called the subgraph of \(G \) *induced* by \(V_1 \) and it is denoted by \(G[V_1] \) or \(<V_1> \).

\(<V_1>\) is also called an *induced subgraph* of \(G \).
Graph shown in figure 1.6(b) is an induced subgraph of the graph given in 1.6(a).

Definition 1.19

A **spanning subgraph** of a graph G is a subgraph of G containing all the vertices of G.

Example

Graph given in figure 1.7(b) is a spanning subgraph of G, displayed in figure 1.7(a).
Definition 1.20

A walk of a graph G is an alternating sequence of vertices and edges say \(v_0 e_1 v_1 e_2 v_2 \ldots e_{n-1} v_n \) beginning and ending with vertices in which each edge is incident with two vertices immediately preceding and following it. The above walk may also be called \(v_0-v_n \) walk. The walk \(v_0-v_n \) is said to be a closed walk if \(v_0 = v_n \) and is open otherwise.

Definition 1.21

An open walk in which no vertex appears more than once is called a path. The number of edges in a path is called the length of the path. The terminal vertices of a path are of degree one, and the rest of the vertices (called intermediate vertices) are of degree two. Generally a path on \(n \) vertices is denoted by \(P_n \).

Remark:

In the above \(v_0- v_n \) walk if all the vertices are distinct it will be termed as a \(v_0- v_n \) path it may also be written as \(v_0v_1v_2\ldots v_n \) by omitting the edges.

Definition 1.22

A closed path is called a circuit. A circuit is also called a cycle, elementary chain, circular path or polygon. A cycle on \(n \) vertices is denoted by \(C_n \).
Example

Definition 1.23

A graph G is said to be connected if there is at least one path between every pair of vertices in G. Otherwise, it is disconnected.

Example

Graph in Figure 1.8 is disconnected. A vertex graph with more than one vertex is connected.

Definition 1.24

A disconnected graph is a disjoint union of two or more connected graphs.

Figure 1.8

In figure 1.8, $v_1e_1v_2e_2v_3e_4v_4$ is a walk. v_1 and v_4 are the terminal vertices of the walk. $v_1e_1v_2e_8v_6e_7v_5$ is a path. Length of this path is 3.

Example

Definition 1.25

The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is another graph $G = (V_1 \cup V_2, E_1 \cup E_2)$ whose vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$.

Definition 1.26

The intersection denoted by $G_1 \cap G_2$ of two graphs G_1 and G_2 is a graph G consisting of those vertices which are common to both G_1 and G_2.

Figure 1.9

For any graph G, then $G = G_1 \cap G_2$.
Three different circuits C_6, C_1, C_2 are shown in figure 1.9.

Definition 1.23

A graph G is said to be *connected* if there is at least one path between every pair of vertices in G. Otherwise G is *disconnected*.

Example

Graph in figure 1.2 is disconnected. A vertex graph with more than one vertex is disconnected. The graph in figure 1.1 is connected.

Definition 1.24

A disconnected graph consists of two or more connected subgraphs of the graph. Each of these connected subgraphs is called a *component*.

Example

The graph in figure 1.2 consists of two components.

Definition 1.25

The *union* of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is another graph $G = (V, E)$ whose vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2$.

Definition 1.26

The *intersection* denoted by $G_1 \cap G_2$ of two graphs G_1 and G_2 is a graph G consisting of those vertices and edges that are in both G_1 and G_2.

For any graph G, $G \cup G = G$; $G \cap G = G$. If v_i is a vertex in a graph G, then $G - v_i$ denotes a subgraph of G obtained from G by
deleting v_i from G. [Deletion of a vertex implies the deletion of all edges incident on that vertex.] If e_j is an edge in G, then $G - e_j$ is a subgraph of G obtained by deleting e_j from G. [Deletion of an edge does not imply deletion of its end vertices.]

Definition 1.27

A graph in which there exists an edge between every pair of distinct vertices is called a *complete graph*. Generally K_p denotes a complete graph in p vertices.

Example

![Figure 1.10](image)

A complete graph on 6 vertices is displayed in figure 1.10.

Definition 1.28

A *tree* is a connected graph without any circuit.

Definition 1.29

A *spanning tree* of a connected graph G is a spanning subgraph of G which is also a tree.
Definition 1.30

Let S be a set and $F = \{S_1, S_2, \ldots, S_p\}$ a non-empty family of distinct non-empty subsets of S whose union is S. The intersection graph of F is denoted by $\Omega(F)$ and is defined by $V(\Omega(F)) = F$, with S_i and S_j adjacent whenever $i \neq j$ and $|S_i \cap S_j| \neq 0$. Then a graph G is an intersection graph on S if there exists a family F of subsets of S for which $G \cong \Omega(F)$.

Theorem 1.31

Every graph is an intersection graph.

Definition 1.32

The intersection number $\omega(G)$ of a given graph G is the minimum number of elements in a set S such that G is an intersection graph on S.

Definition 1.33

A graph G is said to be a bipartite graph or bigraph if its vertex set V can be partitioned into two subsets V_1 and V_2 such that each edge of G has one end in V_1 and the other in V_2. If every vertices in V_1 is joined with all the vertices of V_2, then the bipartite graph is called as a complete bipartite graph and is denoted by $K_{m,n}$ where m is the number of vertices in V_1 and n is the number of vertices in V_2.

Definition 1.34

Let $G = (V, E)$ be a graph and $S \subseteq V$. S is said to be an independent set if no two vertices of S are adjacent in G.
Next we give some important terminologies in the field of algebra.

Definition 1.35

A non empty set with an associative binary operation is called a **semigroup**. We write a multiplicative semigroup as \((S_g, \cdot)\) or simply as \(S_g\).

Definition 1.36

Let \((S_g, \cdot)\) be a semigroup. A non-empty subset \(T\) of \(S_g\) is called a **subsemigroup** of \(S_g\) if it is closed with respect to multiplication.

ie. for all \(x, y \in T\), \(xy \in T\).

Definition 1.37

A non empty set \(S_G\), together with a binary operation \(\ast\) is called a **group** if the following axioms are satisfied:

i) The binary operation \(\ast\) is associative on \(S_G\).

ii) There is an element \(e\) in \(S_G\) such that \(e \ast x = x \ast e = x\) for all \(x \in S_G\). (The element \(e\) is called the identity element for \(\ast\) on \(S_G\).)

iii) For each \(a\) in \(S_G\) there is an element \(a'\) in \(S_G\) such that \(a' \ast a = a \ast a' = e\) (The element \(a'\) is called the inverse of \(a\)).
Definition 1.38

If L is a subset of S_G closed under the group operation of S_G and L itself is a group under this induced operation, then L is a \textit{subgroup} of S_G and is denoted by $L \leq S_G$.

Definition 1.39

Let S_G be a group. Then all subgroups of S_G other than S_G are \textit{proper subgroups} of S_G. Also $\{e\}$ is the \textit{trivial subgroup} of S_G. All other subgroups are non-trivial.

Definition 1.40

Let S_G and S_G' be any two groups. A mapping $\psi : S_G \rightarrow S_G'$ is said to be an isomorphism if

i) ψ is bijective.

ii) $\psi(x \cdot y) = \psi(x) \cdot \psi(y)$ for all $x, y \in S_G$.

The groups S_G and S_G' are then \textit{isomorphic} and is denoted by $S_G \cong S_G'$.

Definition 1.41

Let L be a subgroup of a group S_G and let $a \in S_G$. The \textit{left coset} aL of L is the set $\{al : l \in L\}$. The \textit{right coset} La is similarly defined.

Definition 1.42

A subgroup H of a group S_G is said to be \textit{normal} if $g^{-1}Lg = L$ for all $g \in S_G$.
Definition 1.43

If N is a normal subgroup of a group S_G, the group of cosets of N under the induced operation is called the \textit{factor group} of S_G modulo N and is denoted by S_G / N. The cosets are residue classes of S_G modulo N.

Definition 1.44

A \textit{normal series} of a group S_G is a finite sequence L_0, L_1, \ldots, L_n of normal subgroups of S_G such that $L_i < L_{i+1}$; $L_0 = \{e\}$ and $L_n = S_G$.

Example

Consider the group \mathbb{Z} under addition then $\{0\} < 8\mathbb{Z} < 4\mathbb{Z} < \mathbb{Z}$ are two normal series of \mathbb{Z}.

Definition 1.45

A normal series $\{K_j\}$ is a \textit{refinement} of a normal series $\{L_i\}$ of a group S_G if $\{L_i\} \subseteq \{K_j\}$; i.e. if each L_i is one of the K_j.

Example

The series $\{0\} < 72\mathbb{Z} < 24\mathbb{Z} < 8\mathbb{Z} < 4\mathbb{Z} < \mathbb{Z}$ is a refinement of $\{0\} < 72\mathbb{Z} < 8\mathbb{Z} < \mathbb{Z}$.
Definition 1.46

Two normal series \(\{L_i\} \) and \(\{K_j\} \) of the same group \(G \) are \textit{isomorphic} if there is one to one correspondence between the collections of factor groups \(\{L_{i+1} / L_i\} \) and \(\{K_{j+1} / K_j\} \) such that the corresponding factor groups are isomorphic.

Two isomorphic normal series must have the same number of groups.

Example

Consider \(\mathbb{Z}_{15} \)

The two series \(\{0\} < 5 < \mathbb{Z}_{15} \) and \(\{0\} < 3 < \mathbb{Z}_{15} \) are isomorphic.

Since \(\mathbb{Z}_{15} / 5 \) and \(3 / \{0\} \) are isomorphic to \(\mathbb{Z}_5 \), \(\mathbb{Z}_{15} / 3 \) is isomorphic to \(5 / \{0\} \) or to \(\mathbb{Z}_3 \).

Definition 1.47

A \textit{lattice} is a partially ordered set \(S \) in which each pair of elements has greatest lower bound and least upper bound. If \(x, y \in S \) then greatest lower bound is denoted by \(x \wedge y \) and least upper bound is denoted by \(x \vee y \).

Definition 1.48

A lattice \(S \) is said to be \textit{complete} if every non-empty subset of \(S \) has a greatest lower bound and least upper bound.
Now we just present two basic definitions one in algebra and the other related to topology.

Definition 1.49

Let \mathcal{F} be a collection of subsets of a set S. Then \mathcal{F} is called a *field* iff $S \in \mathcal{F}$ and \mathcal{F} is closed under complementation and finite union.

(a) $S \in \mathcal{F}$

(b) If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$

(c) If $A_1, A_2, \ldots, A_n \in \mathcal{F}$ then $\bigcup_{i=1}^{n} A_i \in \mathcal{F}$

It follows that \mathcal{F} is closed under finite intersection. For, if $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then

$$\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c \in \mathcal{F}$$

If (c) is replaced by closure under countable union, ie,

(d) If A_1, A_2, A_3, \ldots, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ then \mathcal{F} is called a *σ-field*. \mathcal{F} is also closed under countable intersection.

If \mathcal{F} is a field, a countable union of sets in \mathcal{F} can be expressed as the limit of an increasing sequence of sets in \mathcal{F} and conversely. ie.

if $A = \bigcup_{i=1}^{\infty} A_i$, then $\bigcup_{i=1}^{n} A_i \uparrow A$; conversely if $A_n \uparrow A$, then $A = \bigcup_{i=1}^{\infty} A_i$.
This shows that σ-field is a field that is closed under limits of increasing sequence.

Definition 1.50

Let X be a non empty set and τ be a collection of subset of X. τ is said to be a *topology* on X if it satisfies

i) $X, \emptyset \in \tau$

ii) The union of the elements of any subcollection of τ is in τ.

iii) The intersection of the elements of any finite subcollection of τ is in τ.

Then pair (X, τ) is called a *topological space*.