Index

- bimorphism, 3
- biordered set, 1, 2
- category of inductive groupoids, 11
- category, 4
- category of regular semigroups, 11
- column singular E–square, 9
- commutative E–cycle, 22
- commutative E–square, 9
- compatible injections, 53
- completely semisimple semigroup, 22
- cycle free, 8
- degenerate E–square, 9, 25
- diagonal matrix, 52
- E–chains, 7
- E–cycle, 7
- E–sequence, 6
- E–square, 9
- edges, 7
- elementary divisors, 77
- endomorphism, 34
- essential domain, 34
- essential rank, 34
- essential range, 34
- evaluation, 9
- extremity, 7
- free regular semigroup, 14
- free inductive groupoid, 14
- functor, 5
- Green’s relations, 18, 21
- group bound, 72
- groupoid, 5
- idempotent generated inductive groupoid, 12
- idempotent generated regular semigroup, 14
- identity morphism, 5
- index of nilpotence, 67
- inductive groupoid, 10
- inverse, 3
- irreducible decomposition, 82
- length of a singular matrix, 31, 47
- length of an E–chain, 8
- minimal E–cycle, 55
- minimal polynomial, 75
- minimal E–chain, 47
- morphism, 4
- natural partial order, 27
- nilpotent matrix, 67
- normal form, 23
- null space, 15
- nullity, 15
- ordered groupoid, 5
- ordered groupoid of E–chains, 9
- partial algebra, 1
- primary rational canonical form, 77
- proper set of E–cycles, 13, 22, 28
- range space, 15
- rank, 14
- reduced–E–sequence, 7
- regular semigroup, 3
- regular biordered set, 4
- relatively nilpotent matrix, 77
- row singular E–square, 9
- sandwich set, 4
- scalar matrix, 61
- semigroup of singular endomorphisms, 15
- semigroup, 3
- semigroup of singular matrices, 15
- similar E–sequences, 7
- singular E–square, 9
- subgroup of S_n, 55
- V–bijective, 6
- V–injective, 6
- V–isomorphism, 6
- V–surjective, 6
- vertices, 7
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_p</td>
<td>1</td>
</tr>
<tr>
<td>D_{p-1}</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>D_E</td>
<td>2</td>
</tr>
<tr>
<td>ω^*</td>
<td>2</td>
</tr>
<tr>
<td>ω^1</td>
<td>2</td>
</tr>
<tr>
<td>\mathcal{R}</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>2</td>
</tr>
<tr>
<td>ω</td>
<td>2</td>
</tr>
<tr>
<td>$E(S)$</td>
<td>3</td>
</tr>
<tr>
<td>\prec</td>
<td>3</td>
</tr>
<tr>
<td>$M(e, f)$</td>
<td>4</td>
</tr>
<tr>
<td>$S(e, f)$</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>$\text{Hom}(A, B)$</td>
<td>4</td>
</tr>
<tr>
<td>1_A</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
<tr>
<td>$V(G)$</td>
<td>5</td>
</tr>
<tr>
<td>D_G</td>
<td>6</td>
</tr>
<tr>
<td>(G, \leq)</td>
<td>6</td>
</tr>
<tr>
<td>e_x</td>
<td>5</td>
</tr>
<tr>
<td>f_x</td>
<td>5</td>
</tr>
<tr>
<td>1_e</td>
<td>6</td>
</tr>
<tr>
<td>1_{e_x}</td>
<td>6</td>
</tr>
<tr>
<td>s</td>
<td>6</td>
</tr>
<tr>
<td>e_s</td>
<td>7</td>
</tr>
<tr>
<td>f_s</td>
<td>7</td>
</tr>
<tr>
<td>ss'</td>
<td>7</td>
</tr>
<tr>
<td>s^{-1}</td>
<td>7</td>
</tr>
<tr>
<td>s_e</td>
<td>7</td>
</tr>
<tr>
<td>$c(s)$</td>
<td>7</td>
</tr>
<tr>
<td>\sim</td>
<td>7</td>
</tr>
<tr>
<td>e_c</td>
<td>8</td>
</tr>
<tr>
<td>f_c</td>
<td>8</td>
</tr>
<tr>
<td>cc'</td>
<td>8</td>
</tr>
<tr>
<td>$G(E)$</td>
<td>8</td>
</tr>
<tr>
<td>$l(c)$</td>
<td>8</td>
</tr>
<tr>
<td>c^{-1}</td>
<td>8</td>
</tr>
<tr>
<td>$h \times c$</td>
<td>8</td>
</tr>
<tr>
<td>Γ_0</td>
<td>9</td>
</tr>
<tr>
<td>ϵ</td>
<td>9</td>
</tr>
<tr>
<td>(G, ϵ)</td>
<td>10</td>
</tr>
<tr>
<td>$G(S)$</td>
<td>10</td>
</tr>
<tr>
<td>$\epsilon_{\mathcal{G}}$</td>
<td>10</td>
</tr>
<tr>
<td>ϵ_s</td>
<td>10</td>
</tr>
<tr>
<td>p</td>
<td>11</td>
</tr>
<tr>
<td>G/p</td>
<td>11</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>11</td>
</tr>
<tr>
<td>$(x \circ y)_h$</td>
<td>11</td>
</tr>
<tr>
<td>$S(G)$</td>
<td>11</td>
</tr>
<tr>
<td>$G(S(G))$</td>
<td>11</td>
</tr>
<tr>
<td>G_0</td>
<td>12</td>
</tr>
<tr>
<td>$G(E) \mid K_{\epsilon\alpha}$</td>
<td>12</td>
</tr>
<tr>
<td>K_{ϵ}</td>
<td>12</td>
</tr>
<tr>
<td>$K_{\epsilon\alpha}$</td>
<td>12</td>
</tr>
<tr>
<td>Γ_{ϵ}</td>
<td>12</td>
</tr>
<tr>
<td>$T^*(E)$</td>
<td>12</td>
</tr>
<tr>
<td>$\tau(c)$</td>
<td>13</td>
</tr>
<tr>
<td>γ</td>
<td>13</td>
</tr>
<tr>
<td>$G(E) \mid K_{\tau}$</td>
<td>13</td>
</tr>
<tr>
<td>Γ</td>
<td>13</td>
</tr>
<tr>
<td>Γ_0</td>
<td>13</td>
</tr>
<tr>
<td>Γ_{τ}</td>
<td>13</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>ϵ</td>
<td>13</td>
</tr>
<tr>
<td>$\Gamma(S)$</td>
<td>13</td>
</tr>
<tr>
<td>$K\Gamma$</td>
<td>13</td>
</tr>
<tr>
<td>$G\Gamma$</td>
<td>14</td>
</tr>
<tr>
<td>$\epsilon\tau$</td>
<td>14</td>
</tr>
<tr>
<td>$\bar{\Gamma}$</td>
<td>14</td>
</tr>
<tr>
<td>$\Gamma_{e\tau}$</td>
<td>14</td>
</tr>
<tr>
<td>$G\Gamma_{e\tau}$</td>
<td>14</td>
</tr>
<tr>
<td>$S(G_0)$</td>
<td>14</td>
</tr>
<tr>
<td>K</td>
<td>14</td>
</tr>
<tr>
<td>V</td>
<td>14</td>
</tr>
<tr>
<td>$L(V)$</td>
<td>14</td>
</tr>
<tr>
<td>$\mathcal{M}(f)$</td>
<td>15</td>
</tr>
<tr>
<td>$\mathcal{R}(f)$</td>
<td>15</td>
</tr>
<tr>
<td>$\mathcal{S}(V)$</td>
<td>15</td>
</tr>
<tr>
<td>\mathcal{M}_a</td>
<td>15</td>
</tr>
<tr>
<td>\mathcal{S}_a</td>
<td>15</td>
</tr>
<tr>
<td>E_n</td>
<td>15</td>
</tr>
<tr>
<td>$e(U,W)$</td>
<td>17</td>
</tr>
<tr>
<td>D_{E_n}</td>
<td>18</td>
</tr>
<tr>
<td>J</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
</tr>
<tr>
<td>$\mathcal{R} \circ \mathcal{L}$</td>
<td>18</td>
</tr>
<tr>
<td>$\mathcal{L} \circ \mathcal{R}$</td>
<td>18</td>
</tr>
<tr>
<td>\mathcal{H}</td>
<td>18</td>
</tr>
<tr>
<td>L_a, R_a, J_a, H_a, D_a</td>
<td>18</td>
</tr>
<tr>
<td>\leq</td>
<td>18</td>
</tr>
<tr>
<td>S/R</td>
<td>19</td>
</tr>
<tr>
<td>S/L</td>
<td>19</td>
</tr>
<tr>
<td>S'</td>
<td>19</td>
</tr>
<tr>
<td>$L(V)'$</td>
<td>19</td>
</tr>
<tr>
<td>Γ_n</td>
<td>22</td>
</tr>
<tr>
<td>T_e</td>
<td>22</td>
</tr>
<tr>
<td>$G(\mathcal{S}_a)$</td>
<td>22</td>
</tr>
<tr>
<td>$S(G\Gamma_{a})$</td>
<td>23</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
<th>Symbol</th>
<th>Page</th>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{ni}</td>
<td>67</td>
<td>λ_T</td>
<td>78</td>
<td>ρ_T</td>
<td>77</td>
</tr>
<tr>
<td>$K[x]$</td>
<td>75</td>
<td>δ_{ij}</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_T</td>
<td>75</td>
<td>GL_n</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V(T, v)$</td>
<td>76</td>
<td>$E(X)$</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{ij}</td>
<td>77</td>
<td>$D(k)$</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_{ii}</td>
<td>77</td>
<td>$E(k)$</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_i</td>
<td>77</td>
<td>$E(D(k))$</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>