TABLE OF CONTENTS

Acknowledgement \hspace{1cm} i-ii
Table of Contents \hspace{1cm} iii-vi
List of Tables \hspace{1cm} vii
List of Figures \hspace{1cm} viii-ix
Abbreviations \hspace{1cm} x-xi
List of Publications \hspace{1cm} xii

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-15</td>
</tr>
<tr>
<td>1.1</td>
<td>System</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Software Re-engineering</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Re-engineering Process</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Characteristics of Re-engineering</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Purposes and Objectives of Re-engineering</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Objectives of the Present Work</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Motivation for this work</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Organization of the Thesis</td>
<td>13</td>
</tr>
<tr>
<td>II</td>
<td>REVIEW OF LITERATURE</td>
<td>16-48</td>
</tr>
<tr>
<td>III</td>
<td>RESEARCH METHODOLOGY</td>
<td>49-57</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Literature Review Methodology</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Re-engineering Methodology</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Descriptive Research Methodology</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Sample Area</td>
<td>54</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Questionnaire</td>
<td>55</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Data Collection</td>
<td>55</td>
</tr>
</tbody>
</table>
3.4.4 Data Analysis and Interpretation 56

IV EXISTING RE-ENGINEERING MODEL(S) 58-77
4.1 Introduction 58
4.2 Horse Shoe Model 59
4.3 CORUM Model II 61
4.4 Byrne Model 63
4.5 Dual-Spiral Re-engineering Model 66
4.6 Rainfall Model 68
4.7 Reflexion Model 70
4.8 Service-Oriented Software Re-engineering(SoSR) Model 72
4.9 Parallel Iterative Re-engineering Model 75

V PROPOSED RE-ENGINEERING MODEL(S) 78-116
5.1 Introduction 78
5.2 Models for Differentiating ‘Maintenance’ and ‘Re-engineering’ 79
5.2.1 Model based on Software Age 80
5.2.2 Model based on Software Life Cycle (SLC) 81
5.2.3 Discrete Model for Differentiation 83
5.3 Decision Making Model(s) for Re-engineering 85
5.3.1 Thoroughfare Decisive Point 86
5.3.2 Decisive Point based on Maintenance Cost 88
5.3.3 Decisive Point based on Faulty Objects 89
5.4 Efforts Comparison Model 90
5.4.1 Comparison of Efforts based on Objects 91
5.4.2 Metrics for Object-Oriented software systems 92
5.4.3 Efforts Comparison Process 93
5.4.4 Re-engineering Efforts Based on Faulty Objects 94
5.5 Cost Estimation Model 97
 5.5.1 Right time for Re-engineering 99
 5.5.2 Process for Estimating Re-Engineering Cost 100
 5.5.3 Re-engineering Cost of the Candidate Object 101
 5.5.4 Re-engineering Cost of Candidate System 102
5.6 Rainbow Model for Re-engineering 104
 5.6.1 Process for Identification of Faulty Objects 105
 5.6.2 Re-engineering Model for an Object 106
 5.6.3 Object Modeling 107
 5.6.4 Re-engineering Process with Rainbow Model 109
5.7 Model for Increasing Software Age 112

VI CASE STUDIES 117-134
 6.1 Introduction 117
 6.2 Parameters to be Estimated 118
 6.3 Factors which hinder Re-engineering 121
 6.4 Design of Questionnaire cum Schedule 123
 6.5 Data Analysis 124
 6.6 Results and Discussion 124
 6.7 Significant Statements which affect Re-engineering 131

VII CONCLUSION, SUGGESTIONS AND FUTURE SCOPE 135-141
 7.1 Conclusion 135
 7.2 Shortfalls/Gaps in the Existing Models in the light of Proposed Model(s) 138
 7.3 Suggestions 139
 7.4 Future Scope 141
BIBLIOGRAPHY

APPENDICES

Appendix I Questionnaire cum Schedule 153-156

Appendix II List of Sample Software Companies and Client Companies 157-161