LIST OF FIGURES

Figure 1-1 Curie temperatures evaluated for various III-V as well group IV and II-VI semiconducting compounds containing 5% of Mn per cation or 2.5% per atom In 2+ charge state and 3.53 x10^20 holes per cm^3. ... 5

Figure 1-2 (a) Schematics of a MTJ device with CoO-ZnO nano composite barrier. (b) Hysteresis loops of the glass/Cr(2 nm)/Ag(30 nm)/Co(10 nm)/CoO-ZnO(2 nm)/Ag(60 nm) film (marked as Co/ZnO) and the glass/Cr(2 nm)/Ag(30 nm)/Co(10 nm)/Ag(60 nm) reference film (marked as Co/Ag) measured by SQUID at 5 K and 300 K. The Hysteresis loops at 5 K were measured after cooling down from 300 K with 30000 Oe magnetic field.. 6

Figure 1-3 (a) MTJ device: Co(10 nm)/ZnO(1.5 nm)/ Zn_{1-x}Co_xO (30 nm), (b) M-H hysteresis loop of the same MTJ and (c) the TMR of the MTJ. All the data were measured at 2K. The inset in (b) shows the details of the M-H loop in a low magnetic field range. The significant exchange bias field and two asymmetrical branches of the M-H loop indicate that the coercivities of the Co layer and the Zn_{1-x}Co_xO layer are different. .. 7

Figure 1-4 a) RT M-H hysteresis loop of as-grown Pt/Zn_{0.95}Co_{0.05}O/Pt samples. b) I–V curves with 30 consecutive cycles. The sweep sequence is given by numbers and the first cycle is highlighted by a red line. c) Schematic of FM ordering based on the BMP mechanism and mechanism of the resistive switching and magnetic modulation during the set proce... .. 8

Figure 1-5 Coupling of the Co t_{2g} levels for Co:Zn substitution in ZnO for (left) the pure host system and (right) an n-type doped system. Schematic band level diagram comparing the minority Co d levels in ZnO derived from experiment and DFT calculations. The highest occupied state is indicated by the dashed horizontal line...... 16

Figure 1-6 Schematic band structure of an oxide with 3d impurities and a spin-split donor impurity band: a) The position of the 3d level for low T_C, when the splitting of the impurity band is small. b)&c) show positions of the minority (b) or majority-spin (c) 3d bands, respectively, leading to high T_C. The magnetic moment of thin films produced from (Zn_{0.95}M_{0.05})O targets, for M = Sc–Cu, measured at RT. Maxima occur when there
is a large density of \uparrow or \downarrow states at the Fermi level, which is pinned in the donor impurity band...17

Figure 1-7 Representation of magnetic polarons: A donor electron in its hydrogenic orbit couples with its spin antiparallel to impurities with a 3d shell that is half-full or more than half-full. The figure is drawn for $x = 0.1, \gamma = 12$. Cation sites are represented by small circles. Oxygen is not shown; the unoccupied oxygen sites are represented by squares...18

Figure 1-8 Electron tunneling in a F/I/F junction. Upper row: A scheme of the junction in ferromagnetic and antiferromagnetic configuration. Lower row: Spin-resolved density of the electronic d states of the two metals with spin densities split by an exchange field Δex. The conductance is significantly higher in ferromagnetic configuration.22

Figure 1-9 Giant Magnetoresistance Device and its uses in HDD read head23

Figure 1-10 Schematic diagram of a MRAM device. Each magnetic pillar consists of three layers; two magnetic layers depending on the magnetization direction of these layers are separated by a nonmagnetic layer, yielding a structure with a regular GMR functionality. The binary code is stored as the coupling between the two magnetic layers in a pillar and it is read via the magnetoresistive property of the pillar.24

Figure 1-11. Spin-polarized light-emitting diode. Spin-polarized holes of the Mn-GaAs region recombine with electrons in the InGaAs region, with emission of circularly polarized light...25

Figure 1-12. Schematic diagram of an all ZnO-based spin-FET Device..........................27

Figure 1-13 Schematic and SEM image of an all-electric spin FET device. The left (right) QPC, consisting of a pair of split gates L1 and L2 (R1 and R2), acts as a spin injector (detector). ...28

Figure 2-1 Planetary Ball mill Machine and set up ...33

Figure 2-2 Photograph of the Teflon-lined autoclave autoclave with hot plate heater. And a flow chart of Solvothermal synthesis process...35

Figure 2-3 (a and b) Photograph and schematic diagram of the in–housed developed thermal vapor deposition setup, respectively...37

Figure 2-4. Temperature profile of the HT furnace used in the TVD setup. Temperature is monitored inside the chamber using a K–type thermocouple.37
Figure 2-5. Photograph of the field emission scanning electron microscope (Sigma, Zeiss, Germany) used for the morphological characterization of the NSTs............................ 40
Figure 2-6. Schematic diagram of the transmission electron microscopy used for the structural characterization of the NSTs. ... 42
Figure 2-7. Photograph of the x-ray diffractometer (Seifert 3003 T/T, GE, USA) used for the structural characterization of the NWs. .. 44
Figure 2-8. Photograph of the micro–Raman spectrometer (LabRAM HR–800, Jobin Yvon, USA). .. 46
Figure 2-9. First–principles calculated phonon dispersion curve of hexagonal wurtzite (WZ) structured ZnO crystal. Adapted from Ref. [206]. .. 46
Figure 2-2-10 XPS microprobe (PHI X-tool, ULVAC–PHI) with Al Kα x-ray beam (1486.7 eV)... 48
Figure 2-11. Photograph of the steady–state photoluminescence spectrometer (FS920P, Edinburgh Inst., UK). .. 50
Figure 2-12 (a) Lake Shore VSM setup, (b) SQUID setup .. 51
Figure 3-1 XRD pattern of the Co-doped ZnO NPs: For NP 1: (a) undoped (b) 3% Co doped (c) 5% Co.. 54
Figure 3-2. SEM images of the undoped ZnO NPs: (a) NP1, (b) NP2. TEM image of the 3% Co doped NPs: (c) NP1, (d) NP2, (e) HRTEM lattice image of doped NP2, inset shows EDS spectra showing presence of Co inside ZnO matrix, (f) corresponding SAED pattern. .. 56
Figure 3-3. Raman Spectra for the undoped and 3% Co doped ZnO NPs: (a) NP1 (b) NP2, The inset on the upper right corner in each case shows the magnified view of the defect related Raman bands in the in Co doped samples... 57
Figure 3-4. UV-Vis absorption spectra of (a) undoped and Co doped ZnO NPs (3%, 5%) for NP1; (b) undoped and Co doped ZnO NPs (3%, 5%) for NP2. Doped NPs show clear blue shifted band. (c) Comparison of PL spectra of undoped and Co doped ZnO NPs. High intensity of D band (520 nm) in doped NP1 is seen due to higher density of Zn, O vacancies. Inset shows low temperature PL spectra of NP2 exhibiting DBEs and AXs indicating presence of free carriers. ... 59
Figure 3-5. RT M-H loop showing hysteresis of the Co doped ZnO NPs: (a) 3% Co doped NP1, (b) 5% Co doped and NP1; (c) 3% Co doped NP2, (d) 5% Co doped NP2. The inset shows the magnified M-H loop showing clear ferromagnetic hysteresis behavior. Measured parameters are listed in Table 3.1.

Figure 3-6. Temperature dependent magnetization (M-T) curve of 3% Co doped ZnO NP1 and NP2 showing high transition temperature (T_C) and sharp FM to PM transition.

Figure 3-7. Initial portion of the M-H curve fitted with BMP model (Eq. 1): (a) 3% Co doped ZnO NP1 (b) 3% Co doped NP2. Extracted parameters are shown in Table 3.1.

Figure 3-8. (a) XRD pattern of Zn$_{1-x}$Ni$_x$O (x = 0, 0.03) NPs for different milling times (4-12hr) showing wurtzite peaks. Doping induced peak shift is clearly seen for the intense peaks corresponding to (100), (002), and (101) planes.

Figure 3-9. (a) TEM image of undoped ZnO NPs. (b) TEM image of the 2% Ni doped ZnO NPs, (c) HRTEM lattice image & (d) SADE pattern of a single 2% Ni doped ZnO NP showing c-axis growth. (e) EDS spectra taken on a few single Ni doped ZnO NPs.

Figure 3-10. (a-d) Raman spectra for the undoped and 3% Ni doped ZnO NPs for different milling times (4-12hr).

Figure 3-11. XPS spectra of the (a) Zn 2p$_{3/2}$ and 2p$_{1/2}$ states and (b) Ni 2p$_{3/2}$ and 2p$_{1/2}$ states of 3% Ni doped ZnO NPs, (c) O 1s states of undoped ZnO NPs and, (d) O 1s states of 2% Ni doped ZnO NPs.

Figure 3-12. (a) UV-Vis absorption spectra for the undoped and Ni doped ZnO NPs, showing blue shift of band edge absorption with doping.

Figure 3-13. (a-b) PL spectra of undoped and 3% Ni doped ZnO NPs. Strong UV and visible PL bands related to defects can be seen. Different PL peaks (I up to IV) are fitted with Gaussian functions.

Figure 3-14. (a-f) Room temperature M-H plot showing the hysteresis loop for the 3% & 5% Ni doped ZnO NPs for different milling times (4-12hr).

Figure 3-15. Temperature dependent magnetization (M-T) curve of the 3% Ni doped ZnO NPs, 12hr. milled.

Figure 3-16. Initial curve (0-H$_{max}$) of the M-H plot is fitted with BMP model (Eq. (1)) for the 3% Ni doped ZnO NPs. Extracted parameters are shown in Table 3.
Figure 3-17 XRD pattern of undoped, 3% and 8% Co-doped TiO$_2$ NPs. The inset shows comparison of the (101) peak for undoped and doped TiO$_2$ NPs. 85

Figure 3-18 SEM images of the morphology of the Co doped TiO$_2$ NPs: (a) 3% doped, (b) 8% doped. TEM images of the doped TiO$_2$ NPs: (c) 3% Co (d) 8% Co, The inset in (c) and (d) show HRTEM lattice images of 3% and 8% Co doped NPs, respectively. The inset in (d) also shows the corresponding SAED pattern of 8% doped sample. 86

Figure 3-19. Raman Spectra for the undoped and Co doped TiO$_2$ NPs: (a) undoped without milling, (b) undoped, (c) 3% doped and (d) 8% doped 5 hr milled NPs. The inset on the upper right side show the magnified view of the E$_g$(1) Raman modes. 88

Figure 3-20. UV-Vis-DRS absorption spectra of undoped and Co doped TiO$_2$ NPs: (a) undoped, (b) 3% 5 h (c) 3% 8 h and (d) 8% 5 h milled Co doped NPs. Doped NPs show clear red-shifted band. The inset shows (ahv)$^{1/2}$ vs hv plot, indicating reduction of band gap for doped NPs. 89

Figure 3-21 RT M-H hysteresis loop for the Co doped TiO$_2$ NPs: 3%, 8% Co doped TiO$_2$ NPs. The insets show the magnified M-H loop, showing clear FM behaviour. Measured parameters are listed in Table 3.1. 90

Figure 3-22. RT Temperature dependent magnetization (M-T) curve for 3% Co doped TiO$_2$ NPs showing high transition temperature (T$_c$). It shows sharp ferromagnetic to paramagnetic transition. 91

Figure 3-23 Initial portion of the M-H curve fitted with BMP model (Eq. 1): (a) 3% and (b) 8% Co doped NPs. Extracted parameters are shown in Table 3-5. 92

Figure 4-1 XRD pattern of Zn$_{1-x}$Co$_x$O (x = 0, 0.05, 0.07) samples, the corresponding diffraction peaks for ZnO are marked in the pattern. 96

Figure 4-2 (a) FESEM image of the 5% Co doped ZnO NPs, inset shows undoped ZnO NPs with relatively larger size. (b) TEM image of the 7% Co doped ZnO NRs, (c) SAED pattern & (d) HRTEM lattice image of the a single 7% Co doped ZnO NR showing c-axis growth. (e) EDS spectra of a single Co doped ZnO NRs, showing presence of Co inside the ZnO lattice. 98

Figure 4-3 XPS spectra of the (a) Zn 2p$_{3/2}$ and 2p$_{1/2}$ states and (b) Co 2p$_{3/2}$ and 2p$_{1/2}$ states of 7% Co doped ZnO NRs, (c) O 1s states of undoped ZnO NPs and, (d) O 1s states of 7% Co doped ZnO NRs. 100
Figure 4-4 (a) UV-Vis absorption spectra for the undoped and Co doped ZnO samples, showing blue shift of band edge absorption with doping. (b), (c) and (d) show PL spectra of undoped, 5%, 7% Co doped ZnO samples respectively. Strong UV and visible PL bands related to defects can be seen. Different PL peaks (I up to V) are fitted with Gaussian functions. Note the scaling factors in respective data to enable comparison of intensity.

Figure 4-5 (a) Room temperature M-H plot showing the hysteresis loop for the 7% Co doped ZnO NRs. The inset shows the magnified M-H loop showing clear ferromagnetic hysteresis behavior. (b) Temperature dependent magnetization (M-T) curve of the same sample, showing high transition temperature (T_c) and sharp ferromagnetic to paramagnetic transition.

Figure 4-6 Initial curve ($0-H_{max}$) of the M-H plot is fitted with BMP model (Eq. (1)) for the 7% Co doped ZnO NRs. Symbols are for experimental data and the solid line is a fit with the BMP model. Extracted parameters are shown in Table 4-3.

Figure 4-7 Schematic diagram of the bound magnetic polaron (BMP) formation. V_{Zn}, O_i trapped carriers couple with the 3d shell spins of Co ions within its hydrogenic orbit, forming a BMP. FM ordering prevails through BMP percolation. Citation sites are represented by solid circles. Oxygen is not shown; the defects are represented by rectangular boxes.

Figure 4-8 (a-d) XRD pattern of $Zn_{1-x}Ni_xO$ ($x = 0, 0.03, 0.05$) samples, 0-ZnO-NPs, 1-ZnO-NPs, 2-ZnO-NPs, 3-ZnO-NRs respectively, showing wurzite ZnO peaks. Doping induced peak shift is clearly seen for the intense peaks corresponding to (100), (002), and (101) planes.

Figure 4-9 (a) FESEM image of the undoped ZnO NPs. (b-c) TEM image of the 3% & 5% Ni doped ZnO NPs respectively (d) TEM image of the 5% Ni doped ZnO NRs, (e) SAED pattern & (f) HRTEM lattice image of the a single 5% Ni doped ZnO NR showing c-axis growth. (g) EDS spectra of a single Ni doped ZnO NRs, showing presence of Ni inside the ZnO lattice.

Figure 4-10 XPS spectra of (a-c) Zn 2p$_{3/2}$ and 2p$_{1/2}$ states; (d-f) Ni 2p$_{3/2}$ and 2p$_{1/2}$ states; (g-i) O 1s states of 3%, 5% Ni doped ZnO NPs, NRs; (1-ZnO, 2-ZnO, 3-ZnO samples).
Figure 4-11 (a-d) show PL spectra of undoped, 3%, 5% Ni doped ZnO NPs, NRs. Strong UV and visible PL bands related to defects can be seen due to presence of Zn\textsubscript{V}, O\textsubscript{i}, O\textsubscript{Zn}, defects. Different PL peaks (I up to IV) are fitted with Gaussian functions and shown in Table 4-5.

Figure 4-12 (a-c) Room temperature M-H plot showing the hysteresis loop for the 3%, 5% Ni doped ZnO NPs, NRs. The inset shows the magnified M-H loop showing clear ferromagnetic hysteresis behavior for the NRs with higher reaction temperature and time.

Figure 4-13 Initial curve (0-H\textsubscript{max}) of the M-H plot is fitted with BMP model (Eq. (1)) for the 5% Ni doped ZnO NRs. Symbols are for experimental data and the solid line is a fit with the BMP model. Extracted parameters are shown in Table 4-6.

Figure 5-1 XRD pattern of the as-grown Co-doped ZnO: (a) NWs and (b) NPs.

Figure 5-2 RT Raman spectra for the undoped and Co-doped ZnO: (a) NPs and (b) NWs, inset shows the defect related peaks in magnified form in the doped NPs and low intensity peaks in undoped NPs.

Figure 5-3 (a) FESEM image of doped ZnO NWs/NRs grown at 800 C. (b) and (c) TEM image and lattice image of the corresponding NWs, respectively. EDS spectra of doped ZnO NWs grown at 800 C. Co related peak is clear in the doped NWs. (d) & (e) shows rope like structure grown at temperatures 400 C & 500 C respectively.

Figure 5-4 (a) Comparison of PL spectra for as-deposited and RTA treated ZnO NWs. (b) Room temperature PL spectrum of Co-doped ZnO NPs source.

Figure 5-5 M(a)-(b) show M-H loop and M-T plot for the source Co doped ZnO NPs. (c)-(d) show paramagnetic nature of the Co doped ZnO NWs/NRs grown at 700 C & 800 C. (e)-(f) show ferromagnetic characteristics of the rope like NSTs grown at 400 C & 500 C.

Figure 6-1 (a) SEM image of a Co-implanted ZnO NW FET device. The white scale bar corresponds to 1 \textmu m. (b) Source–drain current as a function of gate voltage of a virgin, an Al-implanted, and a Co-implanted ZnO NW in the dark at room temperature. The source–drain bias voltage is 100 mV for the virgin NW and 20 mV for the implanted NWs.