Chapter 1 INTRODUCTION 1-3
1.1. Introduction 1
1.2. Objectives 3

Chapter 2 LITERATURE OVERVIEW 4-44
2.1. HUMAN GUT MICROFLORA 4
2.1.1 Composition of microbiota 5
2.1.2. Colonisation of gut microbiota 9
2.1.3. Gut microbiota and its protective effects on the host 11
2.1.4. Microbiota of breast fed infants and bottle-fed infants 13
2.1.5. Influencing factors of microbiota 14
2.1.6. Importance of an indigenous microflora 14
2.1.7. Microbiota present in the faeces of infant and adult 16
2.1.8. Metabolites of large intestine 16
2.2. THE HISTORY AND THE DEFINITION OF PROBIOTICS 18
2.2.1. Probiotic microorganism 19
2.2.2. Mechanisms of action of probiotic on human gut 20
2.2.3. Probiotics and its beneficial health effects 22
2.2.3.1. Lactose intolerance 23
2.2.3.2. Rotavirus diarrhoea 24
2.2.3.3. Antibiotic-associated diarrhoea 24
2.2.3.4. Allergy
2.2.3.5. Cholesterol Reduction
2.2.3.6. Enhancement of immune system
2.2.3.7. Prevention of cancer
2.2.4. Selection Criteria of probiotics
2.2.4.1. Tolerance to low pH and bile
2.2.4.2. Antagonistic properties
2.2.4.3. Adhesion properties
2.2.4.4. Antibiotic susceptibility test
2.2.4.5. Biogenic amine test
2.2.5. Commercially available probiotics
2.2.6. Lactic acid bacteria
2.2.6.1. Historical background of lactic acid bacteria
2.2.6.2. Classification of lactic acid bacteria
2.2.6.3. Metabolism of Lactic acid bacteria
2.2.6.4. Antimicrobial substances produced by lactic acid bacteria
2.2.6.4.1. Organic acids
2.2.6.4.2. Hydrogen peroxide and carbon dioxide
2.2.6.4.3. Bacteriocins and bacteriocin like substances
2.2.7. Identification of LAB
2.2.8. Infant faeces as a source of potential probiotic strain

Chapter- 3 MATERIALS & METHODS
3.1. MEDIA, CHEMICALS AND ANTIBIOTICS USED IN THE STUDY
3.1.1. Preparation of media plates and slant
3.1.2. Sampling and culturing of lactic acid bacteria from the infant faeces
3.1.3. Test pathogenic microbes
3.2. IDENTIFICATION OF LACTIC ACID BACTERIA
3.2.1. Gram staining
3.2.2. Catalase Test
3.2.3. Motility Test
3.2.4. Growth at 45°C 10°C & 6.5%NaCl
3.2.5. Production of carbon dioxide (CO₂) from glucose fermentation
3.2.6. Hydrolysis of arginine
3.2.7. Sugar fermentation Test
3.3. PROBIOTIC CHARACTERISATION OF THE ISOLATES
3.3.1. Tolerance to Low pH
3.3.2. Bile Tolerance
3.3.3. Biogenic amine Test
3.3.4. Antimicrobial activity
3.3.5. Antibiotic susceptibility test
3.3.6. INVIVO test
3.3.6.1. Animals
3.3.6.2. Bacterial isolates
3.3.6.3. Antibiotic marking and mouse feeding
3.3.6.4. Faecal sampling to enumerate the persistence of strain in the GIT of mice
3.3.8. Cholesterol estimation
3.4. IDENTIFICATION OF LAB STRAINS BY rDNA SEQUENCING MOLECULAR IDENTIFICATION
3.5. STATISTICAL ANALYSIS

Chapter- 4 RESULTS
4.1. ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM THE INFANT FAECES
4.2. SCREENING OF ACID-TOLERANCE LACTIC ACID BACTERIA TO LOW pH
4.3. SCREENING OF BILE TOLERANT LACTIC ACID BACTERIA
4.4. BIgenic AMINE
4.5. ANTIBACTERIAL ACTIVITY
4.6. ANTIBIOTIC SUSCEPTIBILITY TEST ———— 87
4.7. INVIVO COLONIZATION TEST ———— 95
4.8. CHOLESTEROL ESTIMATION ———— 97
4.9. IDENTIFICATION AT SPECIES LEVEL BY 16r-rDNA GENE ANALYSIS ———— 97

Chapter- 5 DISCUSSIONS ———— 105-114
5.1. DISCUSSION ———— 105

Chapter- 6 CONCLUSIONS ———— 115-118
6.1. CONCLUSIONS ———— 115

REFERENCES ———— 119-150

APENDIX ————
ANNEXURE- I ———— i-ii

LIST OF CHEMICALS
ANNEXURE- II ———— iii-viii

RECIPES FOR CULTURE MEDIA AND BIOCHEMICAL TESTS
ANNEXURE- III ———— ix

CARBOHYDRATES USED FOR CARBOHYDRATE FERMENTATION TESTS
ANNEXURE- IV ———— x

ANTIBIOTIC SUSCEPTIBILITY DISC
ANNEXURE- V ———— xi

MOLECULAR CHARACTERIZATION RECIPES