Chapter-IV

n-c-PURE EXACT SEQUENCES

(A Generalization of Cyclic Purity)

INTRODUCTION

In this chapter, we introduce and study the concept of n-c-purity, a generalization of cyclic purity. Actually, this is a special type of φ-purity, where φ is the family of all cyclic R-modules of projective dimension $\leq n$.

In Section 4.1, we introduce the concept of n-c-purity and study properties relative to this. We compare this concept with purity. We show that in the case of commutative integral domains, the concept of 1-c-purity is actually the generalization of purity. Also we prove that for Prüfer domains 1-c-purity implies purity. We show that in case of commutative integral domains the concept of 1-c-purity will be weaker than purity and stronger than RD-purity.

In Section 4.2, we introduce the concept of absolutely n-c-purity and study its properties. As, absolutely c-purity is nothing but injectivity (see Theorem 3.1.3), this concept will become a generalization of injectivity.

In Section 4.3, we introduce and study the concept of n-c-flat. We show that in case of commutative integral domains, the concept of 1-c-flat and torsion-free are same.
In the last Section 4.4, we study the concept of \(n \)-c-regularity.

4.1 \(n \)-CYCLIC PURE EXACT SEQUENCES

Let \(R \) be a ring with left global dimension at most \(m \), where \(m \) is any nonnegative integer. For any nonnegative integer \(n \leq m \), we define

4.1.1 Definition : A short exact sequence \(e : 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) of \(R \)-modules is said to be \(n \)-Cyclic Pure (in short, \(n \)-c-pure) if every cyclic \(R \)-module of projective dimension (in short, \(\text{p.dim} \)) \(< n \) is \(e \)-projective.

4.1.2 Remark :

i) Every short exact sequence of \(R \)-modules is 0-c-pure.

ii) Cyclic purity implies \(n \)-c-purity for every \(n \).

4.1.3 Proposition : Over a right Noetherian ring \(R \), every pure short exact sequence of \(R \)-modules is \(n \)-c-pure for every \(n \).

Proof: Follows from Proposition 2.2.4.

4.1.4 Proposition : Let \(N \) be a submodule of an \(R \)-module \(M \). Then for the canonical short exact sequence \(e : 0 \rightarrow N \rightarrow M \rightarrow M/N \rightarrow 0 \) and a positive integer \(n \leq m \), the following conditions are equivalent.

i) \(e \) is \(n \)-c-pure.

ii) For any \(a \in M \) and any right ideal \(I \) of \(R \) with \(\text{p.dim} \leq n - 1 \) and \(aI \subseteq N \), there exists \(b \in N \) such that \((a - b)I = (0) \).

Proof: i) \(\Rightarrow \) ii) Let \(a \in M \) and \(I \) be any right ideal of \(R \) with \(\text{p.dim} \leq n - 1 \) and \(aI \subseteq N \). There exists \(b \in N \) such that \((a - b)I = (0) \).
n-1 and aI ⊆ N. Then \(p \dim(R/I) \leq n \). Define a map \(f : R/I \rightarrow M/N \)
by \(f(\tilde{r}) = ar + N \). Since \(aI \subseteq N \), \(f \) is a well-defined \(R \)-homomorphism.

By hypothesis (i), there exists \(g \in \text{Hom}(R/I, M) \) such that \(\eta g = f \).

Now \((\eta g)(\tilde{1}) = f(\tilde{1}) \). This implies that \(g(\tilde{1}) + N = a + N \) and hence
\(g(\tilde{1}) - a \in N \). Let \(b = a - g(\tilde{1}) \). Then, \(b \in N \) and \((a - b)I = g(\tilde{1})I = (\bar{o}) \).

Hence the result.

\(\text{ii) } \Rightarrow \text{i) } \) Let \(R/I \) be any cyclic \(R \)-module of \(p \dim \leq n \) and let \(f \in \text{Hom}(R/I, M/N) \). Since \(p \dim(R/I) \leq n \), \(p \dim I \leq n - 1 \). Let \(f(\tilde{1}) = a + N \) for some \(a \in M \). Then \(aI + N = (a + N)I = f(\tilde{1})I = (\bar{o}) \). Hence
\(aI \subseteq N \). By hypothesis (ii), there exists \(b \in N \) such that \((a - b)I = (o) \).

Now define \(g : R/I \rightarrow M \) by \(g(\tilde{r}) = (a - b)r \). Clearly, \(g \) is well-defined homomorphism and
\((\eta g)(\tilde{r}) = \eta((a - b)r) = (a - b)r + N = ar + N = f(\tilde{r}) \)
for every \(\tilde{r} \in R/I \). Thus \(\eta g = f \) and hence \(R/I \) is \(\epsilon \)-projective. So \(\epsilon \) is
\(n \)-c-pure.

4.1.5 Remark : Clearly every \(n \)-c-pure short exact sequence is \(n' \)-c-pure
for every \(n' \leq n \). But if an exact sequence is \(n \)-c-pure, then it need not
be \(n'' \)-c-pure for \(n'' > n \).

Example: Let \(R \) be any Dedekind Domain which is not a field and \(I \)
be any nontrivial ideal of \(R \). Then the canonical short exact sequence
\(\epsilon : 0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0 \) is trivially 0-c-pure. Suppose \(\epsilon \) is 1-c-
pure. Since \(R \) is Dedekind Domain, \(g.dimR \leq 1 \) and hence \(p.dimR/I \leq 1 \).
So \(R/I \) is \(\epsilon \)-projective. Hence \(\epsilon \) splits. Therefore \(I \) is a direct summand of \(R \) which is impossible in a commutative integral domain. So \(\epsilon \) cannot be 1-c-pure.

4.1.6 Remark: A pure exact sequence need not be \(n \)-c-pure. In particular, it need not be 1-c-pure.

Example: Consider the example given after Remark 2.2.1. In that example \(R = \prod_{\alpha \in A} R_\alpha \) and \(S = \bigoplus_{\alpha \in A} R_\alpha \) where \(\{R_\alpha\}_{\alpha \in A} \) is a family of fields. Since each \(R_\alpha \) is projective \(S \) is also projective as an \(R \)-module. Hence \(R/S \) is of projective dimension \(\leq 1 \). If the canonical short exact sequence \(0 \rightarrow S \rightarrow R \rightarrow R/S \rightarrow 0 \) is 1-c-pure, then \(R/S \) is projective with respect to it. Therefore \(S \) is a direct summand of \(R \). So \(S \) cannot be 1-c-pure in \(R \). Since \(R \) is von Neumann regular ring, it follows that \(S \) is pure in \(R \).

4.1.7 Proposition: Over a commutative integral domain \(R \), every pure exact sequence is 1-c-pure.

Proof: Let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be a pure exact sequence of \(R \)-modules. Let \(M = R/I \) be a cyclic \(R \)-module of \(p.dim \leq 1 \). Since \(p.dim(R/I) \leq 1 \), \(I \) is projective. Since \(R \) is a commutative integral domain, \(I \) is invertible and hence is finitely generated. So, \(R/I \) is finitely
presented. Since ϵ is pure exact, $M = R/I$ is ϵ-projective. Hence the result.

4.1.8 Proposition: Over a commutative integral domain R every 1-c-pure exact sequence of R-modules is RD-pure.

Proof: Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a 1-c-pure exact sequence of R-modules, where R is a commutative integral domain. Let $r \neq 0 \in R$. Since R is a commutative integral domain, rR is projective and hence $p.dim(R/rR) \leq 1$. Hence R/rR is ϵ-projective. Now the theorem follows from an equivalent condition of Warfield [33, Proposition 2].

4.1.9 Proposition: Over a Prufer domain a short exact sequence of R-modules is pure if and only if it is 1-c-pure.

Proof: Only if: Follows by Proposition 4.1.7.

If: Follows by Proposition 4.1.8 and using the fact that over a Prufer domain purity and RD-purity are equivalent.

4.1.10 Proposition: A commutative integral domain R is a Prufer domain if and only if every 1-c-pure submodule of an R-module M is pure.

Proof: Only if: Follows from Proposition 4.1.8 and [33, Proposition 2].

If: Let M be a torsion-free R-module. Let $M = F/K$ for some free R-module F and K a submodule of F. Then the canonical short exact sequence $0 \rightarrow K \rightarrow F \rightarrow F/K \rightarrow 0$ is ϵ-pure by Proposition 2.1.8.
Hence it is 1-c-pure. By hypothesis, K is pure in F and hence F/K is flat. By [20, Corollary 2.31], R is a Prüfer domain.

4.1.11 Proposition: Suppose an R-module M satisfies the following condition

(*) Every R-homomorphism from a right ideal I of R of $p.dim < (n - 1)$ into M, can be extended to R.

Then n-c-pure submodules of M also satisfy the condition (*).

Proof: We first note that an R-module M satisfies the condition (*) if and only if $\text{Ext}(R/I, M) = 0$ for every right ideal I of R with $p.dim \leq (n - 1)$. Let A be an n-c-pure submodule of M. Then, the canonical short exact sequence $\epsilon: 0 \rightarrow A \rightarrow M \rightarrow M/A \rightarrow 0$ is n-c-pure. Let I be a right ideal of R with $p.dim \leq (n - 1)$. Then $p.dim(R/I) \leq n$. We have the following exact sequence, $0 \rightarrow \text{Hom}(R/I, A) \rightarrow \text{Hom}(R/I, M) \rightarrow \text{Hom}(R/I, M/A) \rightarrow \text{Ext}(R/I, A) \rightarrow \text{Ext}(R/I, M)$. Since M satisfies (*), $\text{Ext}(R/I, M) = 0$ by the above observation. Since ϵ is n-c-pure, f is surjective and hence $\text{Ext}(R/I, A) = 0$. Therefore A satisfies (*).

4.1.12 Proposition: Let R be a commutative integral domain. If every short exact sequence of R-modules is 1-c-pure, then R is a field.

Proof: Let I be a principal ideal of R. Since R is an integral domain, I is projective. Hence $p.dim R/I \leq 1$. By hypothesis, the canonical short
exact sequence \(\varepsilon : 0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0 \) is 1-c-pure. Hence \(R/I \) is \(\varepsilon \)-projective and so \(I \) is a direct summand of \(R \). Hence \(R \) is von Neumann regular ring. As, \(R \) is a commutative integral domain, it is a field.
4.2 n-ABSOLUTELY c-PURE MODULES

4.2.1 Definition: An R-module M is said to be n-absolutely c-pure if every short exact sequence $0 \to M \to A \to B \to 0$ of R-modules is n-c-pure.

We note that, M is n-absolutely c-pure if and only if it is n-c-pure submodule of its injective hull $E(M)$.

4.2.2 Proposition: An R-module A is n-absolutely c-pure if and only if $\text{Ext}_R(N, A) = 0$ for every cyclic R-module N of $p.\text{dim} \leq n$.

Proof: Let A be an R-module. We have the natural short exact sequence $0 \to A \to E(A) \to E(A)/A \to 0$ where $E(A)$ is the injective hull of A. Let N be a cyclic R-module of $p.\text{dim} \leq n$. Then we have the induced exact sequence $0 \to \text{Hom}(N, A) \to \text{Hom}(N, E(A)) \to \text{Ext}(N, A) \to \text{Ext}(N, E(A)) = 0$. Here, f is surjective if and only if $\text{Ext}(N, A) = 0$. Hence the result.

4.2.3 Proposition: An R-module A is n-absolutely c-pure if and only if every homomorphism from a right ideal I of R with $p.\text{dim} \leq n - 1$ to A, can be extended to R.

Proof: Let A be an R-module and I be a right ideal of R with $p.\text{dim} \leq n - 1$. Then R/I is of $p.\text{dim} \leq n$ and we have an exact sequence $0 \to \text{Hom}(R/I, A) \to \text{Hom}(R, A) \to \text{Hom}(I, A) \to \text{Ext}(R/I, A)$.
\[\rightarrow \text{Ext}(R, A) = 0. \] In this sequence, \(f \) is surjective if and only if \(\text{Ext}(R/I, A) = 0. \) Hence the result.

4.2.4 Proposition: Let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be a short exact sequence of \(R \)-modules, if \(A \) and \(C \) are \(n \)-absolutely \(c \)-pure, then so is \(B \).

4.2.5 Proposition: If \(B \) is an \(n \)-absolutely \(c \)-pure \(R \)-module, then every \(n \)-\(c \)-pure submodule of \(B \) is also \(n \)-absolutely \(c \)-pure.

Proof: Let \(A \) be an \(n \)-\(c \)-pure submodule of \(B \). Then the canonical short exact sequence \(0 \rightarrow A \rightarrow B \rightarrow B/A \rightarrow 0 \) is \(n \)-\(c \)-pure. For a cyclic \(R \)-module \(N \) of \(p.\text{dim} \leq n \), we have an exact sequence \(0 \rightarrow \text{Hom}(N, A) \rightarrow \text{Hom}(N, B) \rightarrow \text{Ext}(N, A) \rightarrow \text{Ext}(N, B) = 0. \) Since \(f \) is surjective, \(\text{Ext}(N, A) = 0. \) By Proposition 4.2.2, \(A \) is \(n \)-absolutely \(c \)-pure.

4.2.6 Proposition: In a right hereditary ring \(R \), an \(R \)-module \(A \) is injective if and only if it is \(1 \)-absolutely \(c \)-pure.

Proof: Only if: Obvious.

If: Let \(I \) be a right ideal of \(R \). By hypothesis, \(R \) is right hereditary, \(I \) is projective and hence \(p.\text{dim}(R/I) \leq 1. \) Since by hypothesis, \(A \) is \(1 \)-absolutely \(c \)-pure and hence \(\text{Ext}_R(R/I, A) = 0, \) (See Proposition 4.2.2).

So \(\text{Hom}(R, A) \rightarrow \text{Hom}(I, A) \) is surjective. Hence \(A \) is injective.

4.2.7 Proposition: If \(R \) is a commutative integral domain, then every
1-absolutely c-pure R-module is divisible.

Proof: Let D be any 1-absolutely c-pure R-module. Let $d \in D$ and $r \neq 0 \in R$. Since R is a commutative integral domain, rR is projective and hence $p.dim(R/rR) \leq 1$. Then by hypothesis, $Ext(R/rR, D) = 0$. Then $Hom(i, D) = i^* : Hom(R, D) \longrightarrow Hom(rR, D)$ is surjective where $i : rR \longrightarrow R$ is the natural inclusion. Define a map $f : rR \longrightarrow D$ by $f(rr') = dr'$. Since R is a commutative integral domain, f is a well-defined homomorphism. There exists $g \in Hom(R, D)$ such that $gi^* = f$. Now $d_0 = g(1) \in D$ and $d_0 r = g(1)r = g(r) = f(r) = d$. So $d = d_0 r$. Hence the result.

4.2.8 Corollary: In a commutative integral domain, a torsion-free R-module is 1-absolutely c-pure if and only if it is injective.

4.2.9 Corollary: In a Dedekind domain R, an R-module is 1-absolutely c-pure if and only if it is injective.
4.3 n-c-FLAT MODULES

4.3.1 Definition: An R-module M is n-c-flat if every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ of R-modules is n-c-pure.

4.3.2 Proposition: Let R be a commutative integral domain. If an R-module is 1-c-flat then it is torsion-free.

Proof: Let M be an 1-c-flat R-module and $M = F/K$ for some free module F and a submodule K of F. Then, K is 1-c-pure in F. Let $\bar{x} \in M$ and $r \neq 0 \in R$ such that $\bar{x}r = \bar{0}$. This implies, $xr \in K$. By Proposition 4.2.7, 1-c-pure implies RD-pure and so $xr \in Kr$. Hence $xr = kr$ for some $k \in K$. This implies $(x - k)r = 0$. Since F is torsion-free, $x - k = 0$. Then $x = k$ and hence $x \in K$. This implies $\bar{x} = \bar{0}$.

4.3.3 Proposition: Suppose R is a commutative integral domain and M is an R-module. The following conditions are equivalent.

i) M is torsion-free.

ii) M is 1-c-flat.

iii) M is c-flat.

Proof: i) \Rightarrow iii) Follows by Proposition 2.1.8.

iii) \Rightarrow ii) is obvious.

ii) \Rightarrow i) Follows by Proposition 4.3.2.

4.3.4 Proposition: For a ring R the following conditions are equivalent.
i) R is semi-simple.

ii) R is right hereditary and every cyclic R-module is 1-c-flat.

Proof: i) \implies ii) is obvious.

ii) \implies i) Let R be a right hereditary ring. Then every right ideal is projective and hence every cyclic R-module is of $p.dim \leq 1$. Since every cyclic R-module is 1-c-flat, every right ideal is a direct summand of R. Hence, R is semi-simple.
4.4. n-c-REGULAR MODULES

4.4.1 Definition: An R-module M is n-c-regular if every short exact sequence $0 \rightarrow A \rightarrow M \rightarrow B \rightarrow 0$ of R-modules is n-c-pure.

We state the following proposition whose proof is straightforward.

4.4.2 Proposition: If R is n-c-regular as a right R-module, then every right ideal of R with $p.dim \leq n - 1$ is a direct summand of R.

4.4.3 Proposition: If R is n-c-regular as a right R-module, then every R-module is n-c-regular.

Proof: We need only prove that every short exact sequence of R-modules is n-c-pure. Let I be any right ideal of R with $p.dim \leq n - 1$. Since R is n-c-pure, the canonical short exact sequence $0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$ splits. Let A be any R-module. Then we have the exact sequence $0 \rightarrow \text{Hom}(R/I, A) \rightarrow \text{Hom}(R, A) \xrightarrow{f} \text{Hom}(I, A) \rightarrow \text{Ext}(R/I, A) \rightarrow \text{Ext}(R, A) = 0$. Since f is surjective, $\text{Ext}(R/I, A) = 0$. Hence $\text{Ext}(N, A) = 0$ for any R-module A and any cyclic R-module N with $p.dim \leq n$. Consider any short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of R-modules. Let N be any cyclic R-module of $p.dim \leq n$. We have an exact sequence $0 \rightarrow \text{Hom}(N, A) \rightarrow \text{Hom}(N, B) \xrightarrow{f} \text{Hom}(N, C) \rightarrow \text{Ext}(N, A) = 0$. Hence f is surjective. So every short exact sequence of R-modules is n-c-pure.
4.4.4 Proposition: If R is a right hereditary and R is 1-c-regular then R is semi-simple.

Proof: If R is 1-c-regular, by Proposition 4.4.3, every cyclic R-module is 1-c-regular and hence 1-c-flat. Hence the proof follows from Proposition 4.3.4.