3. SYNTHESIS OF SUBSTRATE MOLECULES (Schemes)

The substrates, chosen for our study were a decalone based β-keto esters (Scheme 3.1). Depending on the nature of the C-8a group, the substrates were denoted as substrate 81 $R = $H; 85 $R = $ Me; 92 $R = $ COOEt where the groups were hydrogen, methyl carbethoxy respectively; the NMR evidence shows that all the 3 substrates exist predominantly in enol forms in the equilibrium mixture.

\[
\text{Scheme 3.1}
\]

3.1 SYNTHESIS OF SUBSTRATE 81 $R = $H (methyl (4aR,8aR)-3-oxoperhydro-2-naphthalenecarboxylate)

The β-ketoester 81 was synthesized according to the Scheme 3.2. Cyclohexanone enamine was treated with methyl vinyl ketone (MVK) at pH 5, to furnish Robinson annulation product 79. Reduction of 79 with Li / NH$_3$ followed by PCC oxidation of the reduced product mixture provided ketone 80. Regioslective methoxycarbonylation under thermodynamic control yielded 81 (75%).

3.2 SYNTHESIS OF SUBSTRATE 85 $R = $Me (methyl (4aR,8aR)-8a-methyl-3-oxoperhydro-2-naphthalenecarboxylate)

The ketoester 85 was synthesized according to the scheme 3.3. Methyl cyclohexanone 82 was treated with MVK in the presence of catalytic amount of concentrated H$_2$SO$_4$ to furnish Robinson annulation product 83. Reduction of 83 with Li / NH$_3$ followed by PCC oxidation of the reduced product mixture provided ketone 84. Regioslective methoxycarbonylation under thermodynamic control yielded 85 (74%).

3.3 SYNTHESIS OF SUBSTRATE 92 $R = $ COOEt (8a-ethyl 2-methyl (4aR,8aS,)-3-oxoperhydro-2,8a-naphthalenedicarboxylate)

The ketoester 92 was synthesized according to the Scheme 3.4. 2-Carbethoxycyclohexanone 87 was prepared by jlylalio of the enamine of cyclohexanone using ethyl chloroformate. The β-keto ester 87 was transformed to decalone via diketone 88 using Robinson annulation with Ni(acac)$_2$ catalyst.89 The reduction of enone 89 to the ketone 90 having trans ring junction was achieved by using PtO$_2$ / H$_2$.90 Carboxymethylation under thermodynamic control resulted in β-keto ester 92. The NMR spectra of (1H NMR and 13C
NMR) of 95 revealed the predominance of enol tautomer to the extent of more than 90% in the equilibrium mixture.

Reagents, conditions and yields: i. a. pyrrolidine, MVK, benzene, reflux, 24 h, b. AcOH, H2O / AcONa (2:2:1) buffer, reflux, 4 h, 71%; ii. a. Li / NH3, Et2O, t-BuOH, b. NH4Cl, c. PCC, CH2Cl2, 0.5h, 60%; iii. DMC, NaH, benzene, reflux, 6h, 75%.

Scheme 3.2

Reagents, conditions and yields: i. MVK, H2SO4 (cat), benzene, reflux, 6 h, 50%; ii. a. Li / NH3, Et2O, t-BuOH, b. NH4Cl, c. PCC, CH2Cl2, 0.5h, 74%; iii. DMC, NaH, benzene, reflux, 6h, 75%.

Scheme 3.3
Reagents, conditions and yields: i. morpholine, ethylchloroformate, benzene, reflux, 10 h, 62; ii. MVK, 1 mol% Ni (acac)$_2$, 1, 4 dioxan, 85°C, 18 h, 92%; iii. pyrrolidine, benzene, AcOH, H$_2$O / AcONa (2:2:1) buffer, reflux, 7 h, 92%; iv. PtO$_2$ / H$_2$, EtOAc, rt, 4 h, 98% iv. DMC, NaH, benzene, reflux, 10 h, 89%.

Scheme 3.4

4. EXPERIMENTAL TECHNIQUES

As our objective of this experimental probe is to bring out a possible demonstration of the influence of remote substituent in alkylation of a ketone enolates, in this study, we have conducted benzylolation of keto esters 81, 85 and 92 with electronically finely tuned benzyl bromide. We have selectively chosen the substrates, alkylating agent, base and solvent to meet our objective.

The substrates chosen for present study 81, 85 and 92 were trans decalone based β-keto esters. The trans decalones have the inherent advantage in the sense that they are conformationally immobile and therefore, effects due to flipping (dynamic effects) in the rings are avoided. It appeared to us that if the stereoselectivity of alkylation on a system 92 having C-8a-COOR functionality lies in between those systems with hydrogen 81 at C-8a-position and methyl group 85 at C-8a-position, the result would indicate a lesser degree of steric hindrance offered by an ester group. However, a more profound change would advocate stereoelectronic effects due to syn-axial ester group. Previously in our laboratory, Rao and Reddy studied methylation and benzylolation reactions on 81, 85 and 92. However their results