For easy reference, we give below some notations, which we have frequently used.

\begin{itemize}
 \item \textbf{V}(G) - Vertex set of \(G \)
 \item \textbf{E}(G) - Edge set of \(G \)
 \item \(K_p \) - Complete graph on ‘p’ vertices
 \item \(K_{m,n} \) - Complete bipartite graph on \(m+n \) vertices.
 \item \(D_{(u,v)} \) - Distance between ‘u’ and ‘v’ in \(G \)
 \item \textbf{diam}(G) - Diameter of \(G \)
 \item \textbf{det}(A) - Determinant of \(A \)
 \item \textbf{D}(G) - Degree matrix of \(G \)
 \item \textbf{L}(G) - Laplacian Matrix of \(G \)
 \item \(\psi(G, x) \) - Characteristic polynomial of \(G \)
 \item \(\mu(G, x) \) - Characteristic polynomial of Laplacian Matrix of \(G \)
 \item \(\phi(G, x) \) - Characteristic polynomial of the Matrix \(B \) of \(G \)
 \item \(R \) - Incidence Matrix
 \item \(R^t \) - Transpose of Incidence Matrix
 \item \textbf{B}(G) - Matrix \(RR^t \) of \(G \)
 \item \textbf{r}(R) - Rank of Matrix \(R \)
 \item \textbf{S}\text{\textsubscript{A}}(G) - Spectrum of adjacency Matrix \(A \) of \(G \)
 \item \textbf{S}\text{\textsubscript{B}}(G) - Spectrum of Matrix \(B \) of \(G \)
 \item \textbf{S}\text{\textsubscript{L}}(G) - Spectrum of Laplacian Matrix \(L \) of \(G \)
 \item \(\overline{G} \) - Complement of graph \(G \)
\end{itemize}