CHAPTER-IV
APPLICATIONS OF SEMIOPENSETS IN
TOPOLOGICAL SPACES.
4.1. INTRODUCTION

In this chapter the notions of \(\alpha g \)-semiclosed (\(\alpha g^s \)-closed), \(\alpha g \)-closed and \(\alpha g^\alpha \)-closed sets are introduced by using \(\alpha g^s \)-open sets due to Rajmani and Vishwanathan.

We introduced and study the notions of \(\alpha g \)-neighbourhoods, \(\alpha g \)-separation axioms along with fundamental properties of \(\alpha g \)-closed sets. The concepts of weakly \(\alpha g \)-closed sets which are weaker forms of \(\alpha g \)-closed sets are introduced and their relationship between other sets is investigated.

The class of \(\alpha g \)-semiclosed sets are stronger than \(gs \)-closed, \(*gs \)-closed [100] sets and weaker than \(\alpha \)-closed set. \(\lambda \)-closed and \(g^\prime \)-closed sets [99]. The notions of \(\alpha g^s \)-continuous, pre \(\alpha g^s \)-continuous, \(\alpha g^s \)-irresolute \(\alpha g^s \)-open and \(\alpha g^s \)-closed maps are introduced. Moreover as applications of \(\alpha g^s \)-closed sets separation axioms with respect to \(\alpha g^s \)-closed sets are introduced. Finally the concepts of \(\alpha g^s \)-normal and \(\alpha g^s \)-regular spaces are introduced. \(\alpha g^s \)-normality and \(\alpha g^s \)-regularity are separation properties obtained by utilized \(\alpha g^s \)-closed sets.

In this chapter we also introduce the concept of \(\alpha g^\alpha \)-closed sets and study the some of their properties. The \(\alpha g^\alpha \)-closed are stronger than \(\alpha g^*g \)-closed, \(\alpha g^s \) closed sets and weaker than \(\alpha \) closed sets.

4.2. ON \(\alpha g \)-CLOSED SETS IN TOPOLOGICAL SPACES.

In this section, we introduce \(\alpha g \)-closed sets and study some of their properties.
DEFINITION 4.2.1: A subset A of X is called $\alpha\hat{g}$-closed if $\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is αg-open in X.

From the definition, we have the following results.

THEOREM 4.2.2: If A and B are $\alpha\hat{g}$-closed sets, then $A \cup B$ is $\alpha\hat{g}$-closed in X.

PROOF: let A and B be any two $\alpha\hat{g}$-closed sets in X. Let U be any αg-open set in X such that $A \cup B \subseteq U$. Since A and B are $\alpha\hat{g}$-closed, $\text{Cl}(A) \subseteq U$ and $\text{Cl}(B) \subseteq U$ and hence $\text{Cl}(A \cup B) = \text{Cl}(A) \cup \text{Cl}(B) \subseteq U$, which implies $A \cup B$ is $\alpha\hat{g}$-closed in X.

THEOREM 4.2.3: Every closed set is $\alpha\hat{g}$-closed in X.

PROOF: Let A be a closed set in X. Then $\text{Cl}(A) = A$, so if $A \subseteq U$ where U is αg-open set in X, then $\text{Cl}(A) \subseteq U$, which implies A is $\alpha\hat{g}$-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.2.4: let $X = \{a,b,c,d\}$ and $\tau = \{\emptyset,\{a\},\{b\},\{a,b\},X\}$. Then, $\{a,c\}$, $\{a,d\}$ and $\{a,b,d\}$ are $\alpha\hat{g}$-closed but not closed in X.

THEOREM 4.2.5: Every $\alpha\hat{g}$-closed set is $*g$-closed set in X.

PROOF: Let A be a set in X. Let $A \subseteq U$ where U is \hat{g}-open in X. Since every \hat{g}-open set in X is αg-open in X, U is αg-open in X. Hence $\text{Cl}(A) \subseteq U$. So A is $*g$-closed set in X.
The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.2.6: Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, \{a\}, X\} \). Then \(\{b\}, \{c\}, \{a, b\} \) and \(\{a, c\} \) are \(*g\)-closed but not \(\alpha g\)-closed in \(X \).

THEOREM 4.2.7: Every \(g\)-closed set is \(\alpha g\)-closed set in \(X \).

PROOF: Let \(A \) be a \(g\) -closed set in \(X \). Let \(A \subseteq U \), where \(U \) is open in \(X \). Since every open set in \(X \) is \(\alpha g\)-open in \(X \), \(U \) is \(\alpha g\)-open in \(X \). Hence \(Cl(A) \subseteq U \). So, \(A \) is \(\alpha g\) -closed set in \(X \).

Converse of the above theorem need not be true as can be seen by the following example.

EXAMPLE 4.2.8: Let \(X = \{a, b, c, d\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}\} \). Then \(\{a, c\}, \{b, c\}, \{a, b, c\} \) are \(\alpha g\) -closed but not \(g\)-closed sets.

THEOREM 4.2.9: Every \(g\#\)-closed set in \(X \) is \(\alpha g\) - closed in \(X \).

PROOF: Let \(A \) be a \(g\#\)-closed set in \(X \). Let \(G \) be any \(\alpha g\)-open set in \(X \) containing \(A \). Since every \(\alpha g\)-open set is \(\alpha g\)-open, \(Cl(A) \subseteq U \). So \(A \) is \(\alpha g\)-closed set in \(X \).

Converse of the above theorem need not be true as can be seen by the following example.

85
EXAMPLE 4.2.10: Let $X = \{a,b,c,d\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then $\{d\}, \{a, d\}, \{a, c\}, \{b, d\}$ and $\{a, b, d\}$ are $\alpha \hat{g}$-closed but not g^*-closed in X.

THEOREM 4.2.11: Every g-closed set in X is $\alpha \hat{g}$-closed in X.

PROOF: Since every g-closed is g-closed and by the above theorem 4.2.9 g-closed set in X is $\alpha \hat{g}$-closed in X.

THEOREM 4.2.12: Every $\alpha \hat{g}$-closed is αg^*-semi-closed in X.

PROOF: Since $s\text{Cl}(A) \subseteq \alpha \text{Cl}(A)$ and every αg-open set is αg-open in X, the result follows from the definition.

THEOREM 4.2.13: Every $\alpha \hat{g}$-closed set in X is αg^*-closed in X.

PROOF: Let A be any subset of X. Since $s\text{Cl}(A) \subseteq \text{Cl}(A)$ and every αg-open set is sg-open in X, the result follows from the definitions.

EXAMPLE 4.2.15: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b, c, d\}\}$. Then $\{a\}$ is $\alpha \hat{g}$-closed but not αg^*-closed in X.

THEOREM 4.2.16: If A is an $\alpha \hat{g}$-closed in X, then $\text{Cl}(A) - A$ contains no non-empty closed set in X.

PROOF: Suppose that A is $\alpha \hat{g}$-closed in X. Let F be a closed subset of $\text{Cl}(A) - A$, then $A \subseteq F^c$. Since every closed set is αg-closed in X, F is
\[\text{ag}_\text{gs} \text{- closed subset of } \text{Cl}(A) - A. \] Therefore \(\text{Cl}(A) \subseteq F^c \). Consequently \(F \subseteq (\text{Cl}(A))^c \), we have \(F \subseteq \text{Cl}(A) \cap (\text{Cl}(A))^c = \emptyset \) and \(F \) is empty.

THEOREM 4.2.18: A set \(A \) is \(\alpha \hat{g} \)-closed set if and only if \(\text{Cl}(A) - A \) contains no non-empty \(\text{ag}_\text{gs} \)-closed set in \(X \).

PROOF: Suppose \(A \) is a \(\alpha \hat{g} \)-closed set. Let \(U \) be a subset of \(\text{Cl}(A) - A \).
Then \(A \subseteq U^c \). since \(A \) is \(\alpha \hat{g} \)-closed set, we have \(\text{Cl}(A) \subseteq U^c \).
Consequently \(U \subseteq (\text{Cl}(A))^c \), hence \(U \subseteq \text{Cl}(A) \cap (\text{Cl}(A))^c = \emptyset \). Therefore \(U \) is empty.

Conversely, suppose that \(\text{Cl}(A) - A \) contains no non-empty \(\text{ag}_\text{gs} \)-closed set. Let \(A \subseteq G \) and let \(G \) be \(\text{ag}_\text{gs} \)-pen. If \(\text{Cl}(A) \not\subseteq G \), then \(\text{Cl}(A) \cap G^c \) is a non-empty \(\text{ag}_\text{gs} \)-closed subset of \(\text{Cl}(A) - A \). therefore, \(A \) is an \(\alpha \hat{g} \)-closed set in \(X \).

COROLLARY 4.2.19: Let \(A \) be \(\alpha \hat{g} \)-closed, then \(A \) is \(\text{ag}_\text{gs} \)-closed if and only if \(\text{Cl}(A) - A \) is \(\text{ag}_\text{gs} \)-closed.

PROOF: Let \(A \) be \(\alpha \hat{g} \)-closed which is also \(\text{ag}_\text{gs} \)-closed. Then \(\text{Cl}(A) - A = \emptyset \), which is \(\text{ag}_\text{gs} \)-closed.

Conversely, let \(\text{Cl}(A) - A \) be \(\text{ag}_\text{gs} \)-closed and \(A \) be a \(\alpha \hat{g} \)-closed.
Then \(\text{Cl}(A) - A \) does not contain any non-empty subset, because \(\text{Cl}(A) - A \) is \(\text{ag}_\text{gs} \)-closed, \(\text{Cl}(A) - A = \emptyset \), which implies that \(A \) is \(\text{ag}_\text{gs} \)-closed.

THEOREM 4.2.20: If \(A \) is \(\alpha \hat{g} \)-closed and \(A \subseteq B \subseteq \text{Cl}(A) \), then \(B \) is \(\alpha \hat{g} \)-closed.
PROOF: Let $B \subseteq U$ where U is αgs-open. Since A is αg-closed and $A \subseteq U$, it follows that $\text{Cl}(A) \subseteq U$. By hypothesis, $B \subseteq \text{Cl}(A)$. Hence $\text{Cl}(B) \subseteq \text{Cl}(A)$. Consequently, $\text{Cl}(B) \subseteq U$ and so B becomes αg-closed.

Lemma 4.2.21: A subset A of X is αg-closed if and only if $\text{Cl}(A) \subseteq \alpha gs$-ker (A).

Proof: Suppose that A is αg-closed, then $\text{Cl}(A) \subseteq U$ whenever there is $A \subseteq U$ and U is αgs-open. Let $x \in \text{Cl}(A)$. If $x \notin \alpha gs$-ker (A), then there is an αgs-open set U containing A such that $x \notin U$. Since U is an αgs-open set containing A, we have $x \notin \text{Cl}(A)$, a contradiction.

Conversely, let $\text{Cl}(A) \subseteq \alpha gs$-ker (A). If U is any αgs-open set containing A, then $\text{Cl}(A) \subseteq \alpha gs$-ker $(A) \subseteq U$. Therefore A is αg-closed.

Lemma 4.2.22: Let x be any point of X. then every singleton $\{x\}$ is either nowhere dense or pre-open.

In the notion of lemma 4.2.22 we may consider the following decomposition of a given topological space X: $X = X_1 \cup X_2$, where $X_1 = \{ x \in X : \{x\}$ is nowhere dense $\}$ and $X_2 = \{ x \in X : \{x\}$ is pre-open $\}$.

Theorem 4.2.23: For any subset A of X, $X_2 \cap \text{Cl}(A) \subseteq \alpha gs$ -ker (A).

Proof: Let $x \in X_2 \cap \text{Cl}(A)$ and suppose that $x \notin \alpha gs$-ker (A). Then there is an αgs-open set U containing A such that $x \notin U$. If $F = X / U$, then F is αgs-closed. Therefore $x \notin F$ implies $\text{Cl}(A) \subseteq F$. On the other hand,
Cl(x) ⊂ Cl(A) and since x ∈ X₂, there has to be some point y ∈ A ∩ IntCl \{x\} A ∩ Cl\{x\} ⊂ A ∩ F, a contradiction.

THEOREM 4.2.24: A subset A of X is ᾱg - closed if and only if $X₁ ∩ Cl(A) ⊆ A$.

PROOF: Suppose that A is ᾱg - closed. Let $x ∈ X₁ ∩ Cl(A)$. If $x ∈ A$ and $U = X / x$, then U is an αgs-open set containing A and so Cl(A) ⊆ U, a contradiction.

Conversely, suppose that $X₁ ∩ Cl(A) ⊆ A$. Then $X₁ ∩ Cl(A) ⊆ αgs- ker(A)$ By theorem 3.22, we have $Cl(A) = X ∩ Cl(A) = (X₁ ∩ Cl(A)) αgs-ker (A)$. Thus A is ᾱg - closed by lemma 3.20.

THEOREM 4.2.25: An arbitrary intersection of ᾱg - closed sets is ᾱg - closed.

PROOF: Let $F = \{Aᵢ | i ∈ I\}$ be a family of ᾱg-closed sets and let $A = \cap Aᵢ$. Now $A ⊆ Aᵢ$ implies that $X₁ ∩ Cl(A) ⊆ A$ by theorem 4.2.24. Therefore A is ᾱg - closed in X.

4.3.0N ᾱg - NEIGHBOURHOODS.

DEFINITION 4.3.1: A subset A of a topological space (X, τ) is said to be an ᾱg - neighbourhood (in short ᾱg -nbd) of a point $x ∈ X$ if there exists ᾱg-open set U containing x such that $U ⊆ A$.

89
DEFINITION 4.3.2: A point $x \in A$ is said to be an $\alpha \hat{g}$-interior point of A if A is an $\alpha \hat{g}$-nbd of x. In other words, it means that there exists an $\alpha \hat{g}$-open set G containing x such that $G \subseteq A$.

The set of all $\alpha \hat{g}$-interior points of A is said to be $\alpha \hat{g}$-interior of A and is denoted by $\alpha \hat{g}$-int(A).

LEMMA 4.3.3: Let A be a subset of a topological space (X, τ). Then A is $\alpha \hat{g}$-open if and only if A contains an $\alpha \hat{g}$-nbd of each of its pts.

PROOF: Let A be an $\alpha \hat{g}$-open set in (X, τ). Let $x \in A$, implies $x \in A \subseteq A$. Thus A is an $\alpha \hat{g}$-nbd of x. Hence A contains an $\alpha \hat{g}$-nbd of each of its points.

Conversely, A contains an $\alpha \hat{g}$-nbd of each of its points. For every $x \in A$ there exists a neighbourhood N_x of x such that $x \in N_x \subseteq A$. By the definition of $\alpha \hat{g}$-nbd of x, there exists an $\alpha \hat{g}$-open set G_x such that $x \in G_x \subseteq N_x \subseteq A$. Now we shall prove that $A = \bigcup \{G_x : x \in A\}$.

Let $x \in A$. Then there exists an $\alpha \hat{g}$-open set G_x such that $x \in G_x$. Therefore, $x \in \bigcup \{G_x : x \in A\}$ implies $A \subseteq \bigcup \{G_x : x \in A\}$.

Now let $y \in \bigcup \{G_x : x \in A\}$ so that $y \in G_x$ for some $x \in A$ and hence $y \in A$. Therefore, $\bigcup \{G_x : x \in A\} \subseteq A$. Hence $A = \bigcup \{G_x : x \in A\}$.

Also, each G_x is an $\alpha \hat{g}$-open set and hence A is an $\alpha \hat{g}$-open set.
NOTE 43.4: Since every open set is $\alpha \hat{g}$-open set, every interior point of a set $A \subset X$ is $\alpha \hat{g}$-interior point of A. Thus, $\text{Int}(A) \subset \alpha \hat{g} \text{-Int}(A)$. In general $\text{Int}(A) \neq \alpha \hat{g} \text{-Int}(A)$, which is shown in the following example.

EXAMPLE 43.5: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$ be a topology. Let $A = \{a, c\}$. Then $\alpha \hat{g} \text{-Int}(A) = \{c\}$ and $\text{Int}(A) = \emptyset$.

THEOREM 43.6: A is $\alpha \hat{g}$-open if and only if $A = \alpha \hat{g} \text{-Int}(A)$.

PROOF: Let A be an $\alpha \hat{g}$-open set. Now A being $\alpha \hat{g}$ open it is identical with largest $\alpha \hat{g}$ open subset of A. But $\alpha \hat{g} \text{-Int}(A)$ is the largest $\alpha \hat{g}$-open subset of A. Hence $A = \alpha \hat{g} \text{-Int}(A)$.

Conversely, let $\alpha \hat{g} \text{-Int}(A) = A$ and by the definition, $\alpha \hat{g} \text{-Int}(A)$ is an $\alpha \hat{g}$ open set. Then it follows that A is also an $\alpha \hat{g}$-open set.

LEMMA 43.7: If $A \subset B$, then $\alpha \hat{g} \text{-Int}(A) \subset \alpha \hat{g} \text{-Int}(B)$.

Easy proof of this lemma is omitted.

NOTE: $\alpha \hat{g} \text{-Int}(A) = \alpha \hat{g} \text{-Int}(B)$ does not imply that $A = B$. This shown in the following example.

EXAMPLE 43.7.8: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ be a topology on X. Let $A = \{b\}$ and $B = \{b, c\}$, then $\alpha \hat{g} \text{-Int}(A) = \alpha \hat{g} \text{-Int}(B)$ but $A \neq B$.

THEOREM 43.9: Let A and B be subsets of X. Then,
(i) \(\alpha \hat{g} \cdot \text{Int}(A) \cup \alpha \hat{g} \cdot \text{Int}(B) \subset \alpha \hat{g} \cdot \text{Int}(A \cup B) \).

(ii) \(\alpha \hat{g} \cdot \text{Int}(A \cap B) \subset \alpha \hat{g} \cdot \text{Int}(A) \cap \alpha \hat{g} \cdot \text{Int}(B) \).

PROOF: Follows by lemma 4.3.7.

COROLLARY 4.3.10: If \(A \) is an \(\alpha \hat{g} \) - closed subset of \(X \) and \(x \in X - A \), then there exists an \(\alpha \hat{g} \) - nbd \(N \) of \(x \) such that \(N \cap A = \emptyset \)

PROOF: If \(A \) is an \(\alpha \hat{g} \) -closed subset in \(X \), then \(X - A \) is an \(\alpha \hat{g} \) -open set. By lemma 4.3.3, \(X - A \) contains an \(\alpha \hat{g} \) -nbd of each of its points. This implies that there exists an \(\alpha \hat{g} \) -nbd \(N \) of \(x \) such that \(N \subseteq X - A \). It is clear that no point of \(N \) belongs to \(A \) and hence \(N \cap A = \emptyset \)

DEFINITION 4.3.11: Let \((X, \tau) \) be a topological space and \(A \) be a subset of \(X \). Then a point \(x \in X \) is called an \(\alpha \hat{g} \) - limit point of \(A \) if and only if every \(\alpha \hat{g} \) -nbd of \(x \) contains a point of \(A \) distinct from \(x \). That is, \((N - \{x\}) \cap A \neq \emptyset \), \(\forall \) \(\alpha \hat{g} \) -nbd \(N \) of \(x \). Alternatively, we can say that if and only if every \(\alpha \hat{g} \) -open set \(G \) containing \(x \) contains a point of \(A \) other than \(x \).

The set of all \(\alpha \hat{g} \) -limit points of \(A \) is called an \(\alpha \hat{g} \) - derived set of \(A \) and is denoted by \(\alpha \hat{g} \cdot d(A) \).

THEOREM 4.3.12: Let \(A \) and \(B \) be subsets of \(X \) and \(A \subseteq B \). Then \(A \subseteq B \) implies \(\alpha \hat{g} \cdot d(A) \subseteq \alpha \hat{g} \cdot d(B) \).

PROOF: Let \(x \in \alpha \hat{g} \cdot d(A) \) implies \(x \) is an \(\alpha \hat{g} \) -limit point of \(A \), i.e., every \(\alpha \hat{g} \) -nbd of \(x \) contains a point of \(A \) other than \(x \). Since \(A \subseteq B \),
every $\alpha \hat{g}$-nbd of x contains a point of B other than x. Consequently x is an $\alpha \hat{g}$-limit point of B ie $x \in \alpha \hat{g} - d (B)$. Therefore $\alpha \hat{g} - d (A) \subseteq \alpha \hat{g} - d (B)$.

THEOREM 4.3.13: Let (X, τ) be a topological space and let A be a subset of X. Then A is $\alpha \hat{g}$-closed if and only if $\alpha \hat{g} - d (A) \subseteq A$.

PROOF: Suppose A is $\alpha \hat{g}$-closed in X. Then $X - A$ is $\alpha \hat{g}$-open in X. Now we show that $\alpha \hat{g} - d (A) \subseteq A$. Let $x \in \alpha \hat{g} - d (A)$ implies x is an $\alpha \hat{g}$-limit point of A ie. every $\alpha \hat{g}$-nbd of x contains a point of A other than x. Now suppose $x \notin A$ so that $x \in X - A$, which is $\alpha \hat{g}$-open and by definition of $\alpha \hat{g}$-open sets there exists an $\alpha \hat{g}$-nbd N of x such that $N \subseteq X - A$. From this we conclude that N contains no point of A, which is a contradiction. Therefore $x \in A$ and hence $\alpha \hat{g} - d (A) \subseteq A$.

Conversely, assume that $\alpha \hat{g} - d (A) \subseteq A$, and we will show that A is an $\alpha \hat{g}$-closed set in X. Otherwise we will show that there exists an $\alpha \hat{g}$-nbd N of x for each $x \in X - A$. Let x be an arbitrary point of $X - A$ so that $x \notin A$ but as $\alpha \hat{g} - d (A) \subseteq A$, $x \notin A$ implies that $x \notin \alpha \hat{g} - d (A)$ ie., there exists an $\alpha \hat{g}$-nbd N of x, which does not contain any point of A. That is there exists an $\alpha \hat{g}$-nbd N of x which contains only points of $X - A$. This means that $X - A$ is $\alpha \hat{g}$-open set and hence A is $\alpha \hat{g}$-closed.

THEOREM 4.3.14: Let A be any subset of a topological space (X, τ). Then $A \cup \alpha \hat{g} - d (A)$ is an $\alpha \hat{g}$-closed set.

PROOF: $A \cup \alpha \hat{g} - d (A)$ will be an $\alpha \hat{g}$-closed set in X if the set $X - (A \cup \alpha \hat{g} - d (A))$ is an $\alpha \hat{g}$-open set in X. But by De- Morgan’s laws $X - (A \cup \alpha \hat{g} - d (A)) = (X - A) \cap (X - \alpha \hat{g} - d (A))$. Thus we will show that
(X - A) ∩ (X - α\(\hat{g}\) - d(A)) is an α\(\hat{g}\) - open set in X i.e. it contains an α\(\hat{g}\) - nbd of each of its points.

Let x ∈ (X - A) ∩ (X - α\(\hat{g}\) - d(A)) implies x ∈ X - A and x ∈ X - α\(\hat{g}\) - d(A) or x ∉ A and x ∉ α\(\hat{g}\) - d(A). Since x ∉ α\(\hat{g}\) - d(A) i.e. x is not a α\(\hat{g}\) - limit point of A, it follows that there exists an α\(\hat{g}\) - nbd N of x which contains no points of A other than possibly x. But x ∉ A so that N contains no point of A and as such N is a subset of A^c i.e. N ⊆ X - A. Again N is α\(\hat{g}\) - open set and is an α\(\hat{g}\) - nbd of each of its points, but as N does not contain any point of A, no point of N can be a limit point of A. That is, no point of N can belong to α\(\hat{g}\) - d(A). Thus N is a subset of (α\(\hat{g}\) - d(A))^c, i.e. N ⊆ X - α\(\hat{g}\) - d(A).

Therefore N ⊆ (X - A) ∩ (X - α\(\hat{g}\) - d(A)). This implies X - (A - α\(\hat{g}\) - d(A)) contains an α\(\hat{g}\) - nbd N of each of its points so that it is α\(\hat{g}\) - open by Lemma 4.3.3. Hence A ∪ α\(\hat{g}\) - d(A) is α\(\hat{g}\) - closed.

THEOREM 4.3.15: In any topological space (X, τ), every α\(\hat{g}\) - derived set is an α\(\hat{g}\) - closed set.

PROOF: Let A be a set of X and α\(\hat{g}\) - d(A) is an α\(\hat{g}\) - derived set of A. Then by theorem 4.3.13, A is an α\(\hat{g}\) - closed if and only if α\(\hat{g}\) - d(A) ⊆ A. Hence α\(\hat{g}\) - d(A) is α\(\hat{g}\) - d(A) is α\(\hat{g}\) - closed if and only if α\(\hat{g}\) - d(α\(\hat{g}\) - d(A)) ⊆ α\(\hat{g}\) - d(A) i.e., every α\(\hat{g}\) - limit point of α\(\hat{g}\) - d(A) belongs to α\(\hat{g}\) - d(A).

Let x be an α\(\hat{g}\) - limit point of α\(\hat{g}\) - d(A) i.e. x ∈ α\(\hat{g}\) - d(α\(\hat{g}\) - d(A)) so that there exists an α\(\hat{g}\) - open set G containing x such that (G - {x}) ∩ α\(\hat{g}\) - d(A) ≠ Ø implies (G - {x}) ∩ A ≠ Ø. Since every
\begin{align*}
\alpha \mathfrak{g}\text{-} \text{nhd of an element of } \alpha \mathfrak{g}\text{-}d(A) \text{ has at least one point of } A. \text{ Therefore, } x \text{ is a } \alpha \mathfrak{g}\text{-} \text{limit point of } A \text{ ie., } x \in \alpha \mathfrak{g}\text{-}d (A). \text{ Thus } x \in \alpha \mathfrak{g}\text{-}d (\alpha \mathfrak{g}\text{-}d (A)) \text{ implies } x \in \alpha \mathfrak{g}\text{-}d (A). \text{ Therefore } \alpha \mathfrak{g}\text{-}d (A) \text{ is an } \alpha \mathfrak{g}\text{-} \text{closed set in } X.
\end{align*}

4.4. \(\alpha \mathfrak{g} \) - R \text{ SPACES AND } \alpha \mathfrak{g} \text{ - R}_1 \text{ SPACES}

DEFINITION 4.4.1: \text{ Let } A \text{ be a subset of a topological space } (X, \tau). \text{ The } \alpha \mathfrak{g}\text{-kernel of } A, \text{ denoted by } \alpha \mathfrak{g}\text{ker}(A) \text{ is defined to be a set } \alpha \mathfrak{g}\text{ker}(A) = \bigcap \{ U : A \subseteq U \text{ and } U \text{ is } \alpha \mathfrak{g}\text{-open in } (X, \tau) \}.

DEFINITION 4.4.2: \text{ Let } x \text{ be a point of a topological space } (X, \tau). \text{ The } \alpha \mathfrak{g}\text{kernel of } x, \text{ denoted by } \alpha \mathfrak{g}\text{ker}(\{x\}) \text{ is defined to be the set } \alpha \mathfrak{g}\text{ker}(\{x\}) = \bigcap \{ U : x \in U \text{ and } U \text{ is } \alpha \mathfrak{g}\text{-open in } (X, \tau) \}.

THEOREM 4.3.3: \text{ Let } (X, \tau) \text{ be a topological space and } x \in X. \text{ Then } \alpha \mathfrak{g}\text{-ker}(A) = \{ x \in X : \alpha \mathfrak{g}\text{-Cl}(\{x\}) \cap A \neq \emptyset \}.

PROOF: \text{ Assume that } x \in \alpha \mathfrak{g}\text{-ker}(A) \text{ and } \alpha \mathfrak{g}\text{Cl}(\{x\}) \cap A = \emptyset. \text{ Hence } x \notin X - \alpha \mathfrak{g}\text{Cl}(\{x\}) \text{ which is an } \alpha \mathfrak{g}\text{-open set containing } A. \text{ This is impossible, since } x \in \alpha \mathfrak{g}\text{ker}(A). \text{ Hence } \alpha \mathfrak{g}\text{Cl}(\{x\}) \cap A \neq \emptyset.

Conversely, let } \alpha \mathfrak{g}\text{Cl}(\{x\}) \cap A \neq \emptyset \text{ and assume that } x \notin \alpha \mathfrak{g}\text{ker}(\{A\}). \text{ Then there exists an } \alpha \mathfrak{g}\text{-open set } U \text{ containing } A \text{ and } x \notin U. \text{ Let } y \in \alpha \mathfrak{g}\text{Cl}(\{x\}) \cap A. \text{ Hence, } U \text{ is an } \alpha \mathfrak{g}\text{nbd of } y \text{ for which } x \notin U. \text{ By this contradiction, } x \in \alpha \mathfrak{g}\text{ker}(A).
DEFINITION 4.4.4: A topological space \((X, \tau)\) is said to be \(\alpha \hat{g} - R_0\) space if and only if for each \(\alpha \hat{g}\) - open set \(G\) and \(x \in G\) implies
\(\alpha \hat{g} \ Cl(\{x\}) \subseteq G\).

THEOREM 4.4.5: Let \((X, \tau)\) be a topological space and \(x \in X\). Then
y \in \alpha \hat{g} \ker(\{x\}) if and only if \(x \in \alpha \hat{g} \ Cl(\{y\})\).

PROOF: Suppose that \(y \not\in \alpha \hat{g} \ker(\{x\})\). Then there exists an \(\alpha \hat{g}\) -open set \(A\) containing \(x\) such that \(y \not\in A\). Therefore we have \(x \not\in \alpha \hat{g} \ Cl(\{y\})\).

Converse is similar.

THEOREM 4.4.4: For any points \(x\) and \(y\) in a topological space \((X, \tau)\), the following statements are equivalent.

i) \(\alpha \hat{g} \ ker(\{x\}) \neq \alpha \hat{g} \ ker(\{y\})\).

ii) \(\alpha \hat{g} \ Cl(\{x\}) \neq \alpha \hat{g} \ Cl(\{y\})\).

PROOF: (i) \(\rightarrow\) (ii). Suppose that \(\alpha \hat{g} \ ker(\{x\}) \neq \alpha \hat{g} \ ker(\{y\})\), then there exists a point \(z\) in \(X\) such that \(z \in \alpha \hat{g} \ ker(\{x\})\) and \(z \not\in \alpha \hat{g} \ ker(\{y\})\). Since \(z \in \alpha \hat{g} \ ker(x)\), \(\{x\} \cap \alpha \hat{g} \ Cl(\{z\}) = \emptyset\). This implies \(x \in \alpha \hat{g} \ Cl(\{z\})\). By \(z \not\in \alpha \hat{g} \ ker(\{y\})\) we have \(\{y\} \cap \alpha \hat{g} \ Cl(\{z\}) = \emptyset\). Since \(x \in \alpha \hat{g} \ Cl(\{z\})\), \(\alpha \hat{g} \ Cl(\{x\}) \subseteq \alpha \hat{g} \ Cl(\{z\})\) and \(\{y\} \cap \alpha \hat{g} \ Cl(\{x\}) = \emptyset\). Hence \(\alpha \hat{g} \ Cl(\{x\}) \neq \alpha \hat{g} \ Cl(\{y\})\).

(ii) \(\rightarrow\) (i). Suppose that \(\alpha \hat{g} \ Cl(\{x\}) \neq \alpha \hat{g} \ Cl(\{y\})\). Then there exists a point \(z \in \alpha \hat{g} \ Cl(\{x\})\) and \(z \not\in \alpha \hat{g} \ Cl(\{y\})\). Then, there exists an \(\alpha \hat{g}\) -open set containing \(z\) and therefore \(x\), but not \(y\) i.e. \(y \not\in \alpha \hat{g} \ ker(\{x\})\). Hence \(\alpha \hat{g} \ ker(\{x\}) \neq \alpha \hat{g} \ ker(\{y\})\).
THEOREM 4.4.5: A topological space (X, τ) is an $\alpha \hat{g} - R_0$ space if and only if for any $x, y \in X$, $\alpha \hat{g} \text{Cl} \{x\} \neq \alpha \hat{g} \text{Cl} \{y\}$ implies $\alpha \hat{g} \text{Cl} \{x\} \cap \alpha \hat{g} \{y\} = \emptyset$.

PROOF: Suppose that (X, τ) is an $\alpha \hat{g} - R_0$ space and $x, y \in X$ such that $\alpha \hat{g} \text{Cl} \{x\} \neq \alpha \hat{g} \{y\}$. Then there exists a point $z \in \alpha \hat{g} \text{Cl} \{x\}$ such that $z \notin \alpha \hat{g} \text{Cl} \{y\}$ (or $z \in \alpha \hat{g} \text{Cl} \{y\}$ such that $z \notin \alpha \hat{g} \text{Cl} \{x\}$). There exists an $\alpha \hat{g}$-open set V such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin \alpha \hat{g} \text{Cl} \{y\}$. Thus $x \in X - \alpha \hat{g} \text{Cl} \{y\}$, an $\alpha \hat{g}$-open set, which implies $\alpha \hat{g} \text{Cl} \{x\} \subseteq X - \alpha \hat{g} \text{Cl} \{y\}$ and $\alpha \hat{g} \text{Cl} \{x\} \cap \alpha \hat{g} \text{Cl} \{y\} = \emptyset$.

The proof for otherwise part is similar.

Conversely, let V be an $\alpha \hat{g}$-open set in (X, τ) and let $x \in V$. We have to show that $\alpha \hat{g} \text{Cl} \{x\} \subseteq V$. Let $y \notin V$ i.e. $y \in X - V$. Then $x \neq y$ and $x \notin \alpha \hat{g} \text{Cl} \{y\}$. This implies $\alpha \hat{g} \text{Cl} \{x\} \neq \alpha \hat{g} \text{Cl} \{y\}$. By assumption, $\alpha \hat{g} \text{Cl} \{x\} \cap \alpha \hat{g} \text{Cl} \{y\} = \emptyset$. Hence $y \notin \alpha \hat{g} \text{Cl} \{x\}$ and therefore $\alpha \hat{g} \text{Cl} \{x\} \subseteq V$.

THEOREM 4.4.6: A topological space (X, τ) is an $\alpha \hat{g} - R_0$ space if and only if for any points x and y in (X, τ), $\alpha \hat{g} \ker \{x\} \neq \alpha \hat{g} \ker \{y\}$ implies $\alpha \hat{g} \ker \{x\} \cap \alpha \hat{g} \ker \{y\} = \emptyset$.

PROOF: Assume that (X, τ) is an $\alpha \hat{g} - R_0$ space. Then by theorem 4.4.4 for any points x and y in X, if $\alpha \hat{g} \ker \{x\} \neq \alpha \hat{g} \ker \{y\}$, then $\alpha \hat{g} \text{Cl} \{x\} \neq \alpha \hat{g} \text{Cl} \{y\}$. We will show that $\alpha \hat{g} \ker \{x\} \cap \alpha \hat{g} \ker \{y\} = \emptyset$. Suppose $z \in \alpha \hat{g} \ker \{x\} \cap \alpha \hat{g} \ker \{y\}$. By
Theorem 4.4.5 and $z \in \alpha \hat{g} \ker \{\{x\}\}$ implies $x \in \alpha \hat{g} \Cl \{\{z\}\}$. Since $x \in \alpha \hat{g} \Cl \{\{x\}\}$, by Theorem 4.4.5, $\alpha \hat{g} \Cl \{\{x\}\} = \alpha \hat{g} \Cl \{\{z\}\}$. Similarly, we have $\alpha \hat{g} \Cl \{\{y\}\} = \alpha \hat{g} \Cl \{\{z\}\} = \alpha \hat{g} \Cl \{\{x\}\}$, a contradiction. Hence $\alpha \hat{g} \ker \{\{x\}\} \cap \alpha \hat{g} \ker \{\{y\}\} = \emptyset$.

Conversely, let (X, τ) be a topological space such that for any two points x and y in X, $\alpha \hat{g} \ker \{\{x\}\} \neq \alpha \hat{g} \ker \{\{y\}\}$. Hence $\alpha \hat{g} \ker \{\{x\}\} \cap \alpha \hat{g} \ker \{\{y\}\} = \emptyset$. If $\alpha \hat{g} \Cl \{\{x\}\} \neq \alpha \hat{g} \Cl \{\{y\}\}$, then by Theorem 4.4.4 $\alpha \hat{g} \ker \{\{x\}\} \neq \alpha \hat{g} \ker \{\{y\}\}$. Hence $\alpha \hat{g} \ker \{\{x\}\} \cap \alpha \hat{g} \ker \{\{y\}\} = \emptyset$ implies $\alpha \hat{g} \Cl \{\{x\}\} \cap \alpha \hat{g} \Cl \{\{y\}\} = \emptyset$. Since $z \in \alpha \hat{g} \Cl \{\{x\}\}$ implies that $x \in \alpha \hat{g} \ker \{\{z\}\}$. Therefore $\alpha \hat{g} \ker \{\{x\}\} \cap \alpha \hat{g} \ker \{\{z\}\} \neq \emptyset$. By hypothesis, $\alpha \hat{g} \ker \{\{x\}\} = \alpha \hat{g} \ker \{\{z\}\}$. Then $z \in \alpha \hat{g} \Cl \{\{x\}\} \cap \alpha \hat{g} \Cl \{\{y\}\}$ implies that $\alpha \hat{g} \ker \{\{x\}\} = \alpha \hat{g} \ker \{\{z\}\} = \alpha \hat{g} \ker \{\{y\}\}$, a contradiction. Hence $\alpha \hat{g} \Cl \{\{x\}\} \cap \alpha \hat{g} \Cl \{\{y\}\} = \emptyset$. Therefore by Theorem 4.7, (X, τ) is an $\alpha \hat{g}$-space.

Theorem 4.4.7: For a topological space (X, τ), the following properties are equivalent.

i) (X, τ) is an $\alpha \hat{g}$-space.

ii) For any $A \neq \emptyset$ and G is an $\alpha \hat{g}$-open set in (X, τ) such that $A \cap G \neq \emptyset$, there exists an $\alpha \hat{g}$-closed set F in (X, τ) such that $A \cap F \neq \emptyset$ and $F \subseteq G$.

iii) For any $\alpha \hat{g}$-open set G in (X, τ), $G = \bigcup \{F : F \subseteq G, F$ is an $\alpha \hat{g}$-closed set in $(X, \tau)\}$.

iv) For any $\alpha \hat{g}$-closed set F in (X, τ), $F = \cap \{G : F \subseteq G, G$ is an $\alpha \hat{g}$-open set in $(X, \tau)\}$. For any $x \in X$, $\alpha \hat{g} \Cl \{\{x\}\} \subseteq \alpha \hat{g} \ker \{\{x\}\}$.
PROOF : (i) → (ii) : Let A be any non empty set and G be an α_{g}-open set in (X, τ) such that $A \cap G \neq \emptyset$. There exists $x \in A \cap G$. Since $x \in G$, where G is α_{g}-open set in (X, τ), $\alpha_{g} \text{Cl} \{\{x\}\} \subseteq G$. Set $F = \alpha_{g} \text{Cl} \{\{x\}\}$, then F is α_{g}-closed, $F \subseteq G$ and $A \cap F \neq \emptyset$.

(ii) → (iii). Let G be an α_{g}-open set in (X, τ), then $G \supseteq \cup\{ F : F \subseteq G, F$ is α_{g}-closed in $X \}$. Let x be any point of G, there exists an α_{g}-closed set F in (X, τ) such that $x \in F$ and $F \subseteq G$. Therefore, $x \in F \subseteq \cup\{ F : F \subseteq G, F$ is α_{g}-closed in $(X, \tau)\}$ and hence $G = \cup\{ F : F \subseteq G, F$ is α_{g}-closed in $(X, \tau)\}$.

(iii) → (iv). Proof is obvious.

(iv) → (v). Let x be any point of X and $y \notin \alpha_{g} \ker \{\{x\}\}$. There exists α_{g}-open set U such that $x \in U$ and $y \notin U$. Hence $\alpha_{g} \text{Cl} \{\{y\}\} \cap U = \emptyset$. By (iv), $\cap\{ G : \alpha_{g} \text{Cl} \{\{y\}\} \subseteq G, G$ is α_{g} open set in $X \} \cap U = \emptyset$. There exist and α_{g} open set G such that $x \in G$ and $\alpha_{g} \text{Cl} \{\{y\}\} \subseteq G$. Therefore $\alpha_{g} \text{Cl} \{\{x\}\} \cap G = \emptyset$ and $y \notin \alpha_{g} \text{Cl} \{\{x\}\}$. Consequently, we obtain $\alpha_{g} \text{Cl} \{\{x\}\} \subseteq \alpha_{g} \ker \{\{x\}\}$.

(v) → (i). Let G be an α_{g}-open set in (X, τ) and $x \in G$. Suppose $y \in \alpha_{g} \ker \{\{x\}\}$, then $x \in \alpha_{g} \text{Cl} \{\{y\}\}$ and $y \in G$. This implies that $\alpha_{g} \text{Cl} \{\{x\}\} \subseteq \alpha_{g} \ker \{\{x\}\} \subseteq G$. Therefore (X, τ) is an α_{g}-R_α space.

COROLLARY 4.4.8: The following properties are equivalent for a topological space (X, τ).

i) (X, τ) is an α_{g}-R_α space.

ii) $\alpha_{g} \text{Cl} \{\{x\}\} = \alpha_{g} \ker \{\{x\}\}$ for all $x \in X$.

99
PROOF : (i) \rightarrow (ii). Assume that (X, τ) is an $\alpha\hat{g}$-R_\circ space. By theorem 4.4.7 $\alpha\hat{g} \text{Cl}(\{x\}) \subseteq \alpha\hat{g} \text{ker}(\{x\})$ for each $x \in X$. Let $y \in \alpha\hat{g} \text{ker}(\{x\})$, then $x \in \alpha\hat{g} \text{Cl}(\{y\})$ and so $\alpha\hat{g} \text{Cl}(\{y\}) = \alpha\hat{g} \text{Cl}(\{x\})$. Therefore $y \in \alpha\hat{g} \text{Cl}(\{x\})$ and hence $\alpha\hat{g} \text{ker}(\{x\}) \subseteq \alpha\hat{g} \text{Cl}(\{x\})$. This shows that $v(\{x\}) = \alpha\hat{g} \text{ker}(\{x\})$.

(ii) \rightarrow (i). This is obvious by Theorem 4.4.7.

Now, we define the following.

DEFINITION 4.4.9: A topological space (X, τ) is $\alpha\hat{g}$-symmetric if for any points x and y in X, $x \in \alpha\hat{g} \text{Cl}(\{y\})$ implies $y \in \alpha\hat{g} \text{Cl}(\{x\})$.

THEOREM 4.4.10: The following properties are equivalent for a topological space (X, τ).

i) (X, τ) is an $\alpha\hat{g}$-R_\circ space,

ii) $x \in \alpha\hat{g} \text{Cl}(\{y\})$ if and only if $y \in \alpha\hat{g} \text{Cl}(\{x\})$ for any points x and y in (X, τ).

PROOF : (i) \rightarrow (ii). Suppose X is an $\alpha\hat{g}$-R_\circ space. Let $x \in \alpha\hat{g} \text{Cl}(\{y\})$ and U be any $\alpha\hat{g}$-open set such that $y \in U$. Now by hypothesis, $x \in U$. Therefore, every $\alpha\hat{g}$-open set containing y contains x. Hence $y \in \alpha\hat{g} \text{Cl}(\{x\})$.

(iiib) \rightarrow (i). Let V be an $\alpha\hat{g}$-open set and $x \in V$. If $y \notin V$, then $x \notin \alpha\hat{g} \text{Cl}(\{y\})$ and hence $y \notin \alpha\hat{g} \text{Cl}(\{x\})$. This implies that $\alpha\hat{g} \text{Cl}(\{x\}) \subseteq V$. Hence (X, τ) is an $\alpha\hat{g}$-R_\circ space.

REMARK 4.4.11: The notions of $\alpha\hat{g}$-symmetric and $\alpha\hat{g}$-R_\circ are equivalent by Definition 4.4.9 and Theorem 4.4.10.
THEOREM 4.4.12: For a topological space \((X, \tau)\), the following properties are equivalent.

i) \((X, \tau)\) is an \(\alpha \hat{g} \)-\(R_o \) space.

ii) If \(A \) is an \(\alpha \hat{g} \)-closed, then \(A = \alpha \hat{g} \ker(A) \).

iii) If \(A \) is an \(\alpha \hat{g} \)-closed and \(x \in A \), then \(\alpha \hat{g} \ker(\{x\}) \subseteq A \).

iv) If \(x \in X \), then \(\alpha \hat{g} \ker(\{x\}) \subseteq \alpha \hat{g} \Cl(\{x\}) \).

PROOF: (i) \(\rightarrow\) (ii): Let \(A \) be \(\alpha \hat{g} \)-closed in \(X \) and \(x \notin A \). Thus \(X - A \) is \(\alpha \hat{g} \)-open and \(x \in X - A \). Since \((X, \tau)\) is \(\alpha \hat{g} \)-\(R_o \), \(\alpha \hat{g} \Cl(\{x\}) \subseteq X - A \). Thus \(\alpha \hat{g} \Cl(\{x\}) \cap A = \emptyset \) and by theorem 4.4.3, \(x \notin \alpha \hat{g} \ker(A) \). Therefore \(\alpha \hat{g} \ker(A) = A \).

(ii) \(\rightarrow\) (iii): In general, \(U \subseteq V \) implies \(\alpha \hat{g} \ker(U) \subseteq \alpha \hat{g} \ker(V) \). Therefore \(\alpha \hat{g} \ker(\{x\}) \subseteq \alpha \hat{g} \ker(\{A\}) = A \) by (ii).

(iii) \(\rightarrow\) (iv): Since \(x \in \alpha \hat{g} \Cl(\{x\}) \) and \(\alpha \hat{g} \Cl(\{x\}) \) is \(\alpha \hat{g} \)-closed, by (3) \(\alpha \hat{g} \ker(\{x\}) \subseteq \alpha \hat{g} \Cl(\{x\}) \).

(iv) \(\rightarrow\) (i): Let \(x \in \alpha \hat{g} \Cl(\{y\}) \). Then by Lemma 4.4.3, \(y \in \alpha \hat{g} \ker(\{x\}) \). Since \(x \in \alpha \hat{g} \Cl(\{x\}) \) and \(\alpha \hat{g} \Cl(\{x\}) \) is an \(\alpha \hat{g} \)-closed, by (ii) we obtain \(y \in \alpha \hat{g} \ker(\{x\}) \subseteq \alpha \hat{g} \Cl(\{x\}) \). Therefore \(x \in \alpha \hat{g} \Cl(\{y\}) \) implies \(y \in \alpha \hat{g} \Cl(\{x\}) \). The converse is obvious and \((X, \tau)\) is an \(\alpha \hat{g} \)-\(R_o \) space.

THEOREM 4.4.13: A topological space \((X, \tau)\) is \(\alpha \hat{g} \)-\(R \), if and only if for \(x, y \in X \); \(\alpha \hat{g} \ker(\{x\}) \neq \alpha \hat{g} \ker(\{y\}) \), there exist disjoint \(\alpha \hat{g} \)-open sets \(U \) and \(V \) such that \(\alpha \hat{g} \Cl(\{x\}) \cup \alpha \hat{g} \Cl(\{y\}) \subseteq V \).

PROOF: Follows from Lemma 4.4.4.
4.5. WEAKLY α^g-CLOSED SETS.

We introduce the definition of a weakly α^g-closed set in a topological space and study the relationship between other such closed sets.

DEFINITION 4.5.1: A subset A of a topological space X is called a weakly α^g-closed (briefly w^g-closed) set if $\text{Cl} (\text{Int}(A)) \subseteq G$ and G is αgs-open in X.

REMARK 4.5.2: Every α^g-closed set is $w\alpha^g$-closed. But the converse of this implication is not true in general.

EXAMPLE 4.5.3: Let $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, X \}$. Then the set $\{b\}$ is $w\alpha^g$-closed but not α^g-closed in (X, τ).

COROLLARY 4.5.4: Every closed set is $w\alpha^g$-closed.

THEOREM 4.5.5: Every $w\alpha^g$-closed set is gsp-closed.

PROOF: Let A be $w\alpha^g$-closed and G be an open set containing A in X. Then $G \supseteq \text{Cl} (A) \supseteq \text{Cl} (\text{Int}(A))$. Thus A is $w\alpha^g$-closed in X. Then G is an αgs-open set containing A and so $G \supseteq \text{Int} (\text{Cl} (\text{Int}(A)))$. Which implies $A \cup G \supseteq A \cup \text{Int} (\text{Cl} (\text{Int}(A)))$, that is $G \supseteq \text{spcl}(A)$. Thus A is gsp-closed set in X.

Converse of the above theorem need not be true as seen from the following example.
EXAMPLE 4.5.6: Let $X = \{a, b, c\}$, and $
abla = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the sets $\{a\}$ and $\{b\}$ are gsp-closed but not $w\alpha g$-closed in X.

THEOREM 4.5.7: If a subset A of a topological space X is both closed and αg-closed, then it is $w\alpha g$-closed in X.

PROOF: Let be an αg-closed set in X and G be an open set containing A. Then G is αg-open containing A and so $G \supseteq Cl(A) = A \cup Cl(Int(A))$. Since A is closed, $G \supseteq Cl(Int(A))$ and hence A is $w\alpha g$-closed in X.

THEOREM 4.5.8: If a subset A of a topological space X is both open and $w\alpha g$-closed, then it is closed.

PROOF: Since A is both open and $w\alpha g$-closed, $A \supseteq Cl(Int(A)) = Cl(A)$ and hence A is closed set in X.

COROLLARY 4.5.9: If a subset A of topological space X is both open and $w\alpha g$-closed, then it is both regular open and regular closed in X.

THEOREM 4.5.10: A set A is $w\alpha g$-closed if and only if $Cl(Int(A)) - A$ contains no nonempty αgs-closed set.

PROOF: Necessity. Let F be a αgs-closed set such that $F \subseteq Cl(Int(A)) - A$. Since F^c is αgs-open and $A \subseteq F^c$, from the definition of $w\alpha g$-closed set it follows that $Cl(Int(A)) \subseteq F^c$ i.e., $F \subseteq (Cl(Int(A))^c)$. This implies that $F \subseteq Cl(Int(A)) \cap (Cl(Int(A))^c) = \emptyset$.

Sufficiency. Let $A \subseteq G$ and G be an αgs-open set in X. If $Cl(Int(A))$ is not contained in G, then $Cl(Int(A)) \cap G^c$ is a nonempty
αg - closed set of Cl (Int (A)) – A, we obtain a contradiction. This proves the sufficiency and hence the theorem.

COROLLARY 4.5.11: A wαg-closed set A is regular closed set if and if Cl (Int (A)) – A is αgs-closed set and Cl (Int (A)) ⊇ A.

PROOF: **Necessity.** Since the set A is regular closed set, Cl (Int (A)) – A = Ø. Therefore A is regular closed set.

Sufficiency. By theorem 4.5.10 Cl (Int (A)) – A contains nonempty αgs-closed set. That is Cl (Int (A)) – A = Ø. Therefore, A is regular closed.

THEOREM 4.5.12: Let (X, τ) be a topological space and B ⊆ A ⊆ X. If B is wαg-closed set relative to A and A is both open and αg-closed subset of X, then B is wαg-closed set relative to X.

PROOF: Let B ⊆ G and G be an αgs-open set in X. Then B ⊆ A ∩ G. Since B is wαg-closed relative to A, Cl (Int (B)) ⊆ A ∩ G. That is A ∩ Cl (Int (B)) ∩ A ∩ G. We have A ∩ Cl (Int (B)) ∩ G and then A ∩ Cl (Int (B)) ∩ Cl (Int (B)) ∩ G ∩ (Cl (Int (B)) ∩ G). Since A is wαg-closed in X, we have Cl (Int (A)) ∩ G ∩ (Cl (Int (B)) ∩ G). Therefore Cl (Int (B)) ∩ G, since Cl (Int (B)) is not contained in Cl (Int (B)) ∩ G. Thus B is wαg-closed set relative to X.

COROLLARY 4.5.13: If A be wαg-closed set and F is closed set in a topological space X, then A ∩ F is wαg-closed in X.
PROOF: Let $A \cap F$ is closed set in A. Therefore $\text{Cl}_A(A \cap F) = A \cap F$ in A. Let $A \cap F \subseteq G$, where G is ags-open in A. then $\text{Cl}(\text{Int}(A \cap F)) \subseteq G$ and hence $A \cap F$ is $w\alpha \hat{g}$-closed in A. By theorem 4.5.9, $A \cap F$ is $w\alpha \hat{g}$-closed in X.

THEOREM 4.5.14: If A is $w\alpha \hat{g}$-closed and $A \subseteq B \subseteq \text{Cl}(\text{Int}(A))$, then B is $w\alpha \hat{g}$-closed.

PROOF: Since $A \subseteq B$, $\text{Cl}(\text{int}(B)) - B \subseteq \text{Cl}(\text{Int}(A)) - A$. theorem 4.5.10 $\text{Cl}(\text{Int}(A)) - A$ contains no nonempty closed set and so $\text{Cl}(\text{Int}(B)) - B$ again by theorem 4.5.10, B is $w\alpha \hat{g}$-closed.

THEOREM 4.5.15: Let X be a topological space and $A \subseteq Y \subseteq X$. If A is $w\alpha \hat{g}$-closed in X, then A is $w\alpha \hat{g}$-closed relative to Y.

PROOF: Let $A \subseteq Y \cap G$ where G is αgs-open in X. Since A is $w\alpha \hat{g}$-closed in X $A \subseteq G$ implies $\text{Cl}(\text{Int}(A)) \subseteq G$. That is $Y \cap (\text{Cl}(\text{Int}(A))) \subseteq Y \cap G$, where $Y \cap \text{Cl}(\text{Int}(A))$ is closure of A in Y. Thus A is $w\alpha \hat{g}$-closed relative to Y.

THEOREM 4.5.16: If a subset A of a topological space X is nowhere dense, then it is $w\alpha \hat{g}$-closed in X.

PROOF: Since $\text{Int}(A) \subseteq \text{Int}(\text{Cl}(A))$ and A is nowhere dense, $\text{Int}(A) = \emptyset$ and hence A is $w\alpha \hat{g}$-closed in X.

Converse of the above theorem need not be true as seen from the following example.
EXAMPLE 4.5.17: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then the set $\{a\}$ and $\{b, c\}$ is $\omega g\hat{\cdot}$-closed in X but not nowhere dense in X.

REMARK 4.5.18: If any subsets A and B of topological space X are $w\alpha \hat{\cdot} g\hat{\cdot}$-closed, then their union need not be $w\alpha \hat{\cdot} g\hat{\cdot}$-closed.

EXAMPLE 4.5.19: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. In this topological space the sets $\{a\}$ and $\{c\}$ are $w\alpha \hat{\cdot} g\hat{\cdot}$-closed but their union $\{a, c\}$ is not $w\alpha \hat{\cdot} g\hat{\cdot}$-closed in X.

REMARK 4.5.20: If any subsets A and B of a topological space are $w\alpha \hat{\cdot} g\hat{\cdot}$-closed, then their intersection need not be $w\alpha \hat{\cdot} g\hat{\cdot}$-closed.

EXAMPLE 4.5.21: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{a, c\}, \{a\}, \{b\}, X\}$. In this topological space, the subsets $\{a, b\}$ and $\{a, c\}$ are $w\alpha \hat{\cdot} g\hat{\cdot}$-closed but their intersection $\{a\}$ is not $w\alpha \hat{\cdot} g\hat{\cdot}$-closed in X.

THEOREM 4.5.22: Every $g\alpha$-closed set is $w\alpha \hat{\cdot} g\hat{\cdot}$-closed but not conversely.

PROOF: Suppose A is $g\alpha$-closed subset of X and let G be an α-open set containing A. By theorem 3.2 [18] G is a αgs-open set containing A. Now $G \supseteq \alpha Cl(A) = Cl(Int(Cl(A))) \supseteq Cl(Int(A))$. Thus A is $w\alpha \hat{\cdot} g\hat{\cdot}$-closed in X.

Converse of the above theorem need not be true as seen from the following example.
EXAMPLE 4.5.23: Let $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X \}$. Then the set $\{a\}$ is $\omega\alpha\hat{g}$-closed in X but not $g\alpha$-closed set.

REMARK 4.5.24: $\omega\alpha\hat{g}$ closedness is independent of semi-closedness, g-closedness, gs-closedness, g-closedness, g-semi-closedness and $\alpha\hat{g}$-semi-closedness.

EXAMPLE 4.5.25: Let $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, X \}$. Then the set $\{a, b\}$ is g-closed, gs-closed, and g-closed in X but not $\omega\alpha\hat{g}$-closed in X.

EXAMPLE 4.5.26: Let $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \}$. Then the set $\{a, b\}$ is not $w\alpha\hat{g}$-closed, not semi-closed set in X, but it is g-closed, αg closed and g-closed set in X.

EXAMPLE 4.5.27: $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \}$. Then the set $\{a\}$ is semi-closed, g-gs-closed and gs-closed but not is $\omega\alpha\hat{g}$-closed in X.

EXAMPLE 4.5.28: Let X and τ be as in Example 4.5.26, then the set $\{a\}$ is $\omega\alpha\hat{g}$-closed but not gs-closed and g-closed in X.

4.6. ON $\alpha\hat{g}$-CLOSED SETS IN TOPOLOGICAL SPACES

In this section, we define and study the concept of $\alpha\hat{g}$-closed sets in topological spaces.
DEFINITION 4.6.1: A subset A of X is called an $\alpha \tilde{g}$-semiclosed (briefly $\alpha \tilde{g}s$-closed) if $s\text{Cl}(A) \subseteq U$, whenever $A \subseteq U$ and U is αgs-open in X.

THEOREM 4.6.2: Every closed set is αgs-closed set in X.

PROOF: Let A be a closed set in X. Note that $s\text{Cl}(A) \subseteq \text{Cl}(A)$ always and $\text{Cl}(A) = A$ if A is closed set. So, if $A \subseteq G$, where G is αgs-open set in X, then $s\text{Cl}(A) \subseteq \text{Cl}(A) = A \subseteq G$. That is $s\text{Cl}(A) \subseteq G$ and G is αgs-open in X. Hence A is αgs-closed set in X.

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.6.3: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ Then the sets $\{b\}$ and $\{c\}$ are αgs-closed but not closed in X.

REMARK 4.6.4: Since every closed set is semiclosed set, every semiclosed set is αgs-closed in X.

PROOF 4.6.5: Trivial.

THEOREM 4.6.6: Every α-closed set is $\alpha \tilde{g}s$-closed in X.

PROOF: Let $A \subseteq X$ be a closed set. Note that $s\text{Cl}(A) \subseteq \alpha \text{Cl}(A)$ always, and $\alpha \text{Cl}(A) = A$, if A is α-closed set. So, if $A \subseteq G$, where G is αgs-open in X, then $s\text{Cl}(A) \subseteq A \subseteq G$. Hence A is $\alpha \tilde{g}s$-closed in X.

Converse of the above theorem need not be true as shown by the following example.
EXAMPLE 4.6.7: Let $X = \{a, b, c\}$ and $\tau = \emptyset, \{a\}, \{b\}, \{a, b\}, X$.
Then the sets $\{a\}$ and $\{b\}$ are $\alpha\bar{g}\bar{s}$-closed but not α-closed in X.

We recall the following lemma due to Rajamani et.al.

LEMMA 4.6.8: [85] Every $\alpha\bar{g}\bar{s}$ open set in X is $\alpha\bar{g}$-open in X.

Now we prove the following theorem.

THEOREM 4.6.9: Every g^s-closed set is $\alpha\bar{g}$ s-closed set in X.

PROOF: Let A be a g^s-closed set in X. Let $A \subseteq U$, where U is $\alpha\bar{g}\bar{s}$-open in X. Every $\alpha\bar{g}\bar{s}$ – open set in X is $\alpha\bar{g}$- open in X by the above lemma, therefore U is $\alpha\bar{g}$-open in X. Hence $s\text{Cl}(A) \subseteq U$, so A is $\alpha\bar{g}$ s – closed set in X.

Converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.6.10: Let $X = \{a, b, c, d\}$ and $\tau = \emptyset, \{a\}, \{b\}, \{a, b\}$ Then the sets $\{a, b\}, \{a, b, d\}$ are $\alpha\bar{g}\bar{s}$-closed sets but not g^s-semi-closed in X.

THEOREM 4.6.11: Every $\alpha\bar{g}$ s – closed set is gs-closed set in X.

PROOF: Let A be an $\alpha\bar{g}$ s–closed set in X. Let U be an open set containing A in X. Since every open set is $\alpha\bar{g}\bar{s}$-open [85], U is $\alpha\bar{g}\bar{s}$-open in X. Hence $s\text{Cl}(A) \subseteq U$, therefore A is gs-closed in X.

Converse of the above theorem need not be true as seen from the following example.
EXAMPLE 4.6.12: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ Then the sets $\{a, b\}, \{a, c\}$ are gs-closed but not $\alpha\hat{g}s$ - closed set in X.

THEOREM 4.6.13: Every $\alpha\hat{g}s$ -closed set is ψ- closed set in X.

PROOF: Let A be $\alpha\hat{g}s$ -closed set in X. Let $A \subseteq U$, where U is $\alpha\hat{g}s$-open in X. Every $\alpha\hat{g}s$-open set is sg-open in X, therefore U is sg-open in X. Hence $s\text{Cl}(A) \subseteq U$. So A is ψ- closed set in X.

Converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.6.14: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ Then the set $\{a, b, c\}$ is ψ-closed but not $\alpha\hat{g}s$-closed in X.

THEOREM 4.6.15: Every $\alpha\hat{g}s$ - closed set is $^*\text{gs}$-closed set in X.

PROOF: Let A be any $\alpha\hat{g}s$ - closed set in X. Let $A \subseteq U$, where U is \hat{g}-open set (or ω-open set) in X. Every ω-open (\hat{g}-open set) in X is $\alpha\hat{g}s$-open in X [85]. Therefore U is $\alpha\hat{g}s$-open in X. hence $s\text{Cl}(A) \subseteq U$. So A is $^*\text{gs}$-closed in X.

Converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.6.16: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ Then the set $\{a, b, c\}$ is $^*\text{gs}$ but not $\alpha\hat{g}s$-closed in X.

THEOREM 4.6.17: Every $\alpha\hat{g}$-closed set is $\alpha\hat{g}$-s-closed set in X.
PROOF: Let A be any $\alpha \hat{g}$-closed set in X and U be any αgs-open set in X containing A. Then $\text{Cl}(A) \subseteq U$. Since $s\text{Cl}(A) \subseteq \text{Cl}(U)$ always, we have $s\text{Cl}(A) \subseteq \text{Cl}(A) \subseteq (U)$, That is $s\text{Cl}(A) \subseteq U$. Therefore A is $\alpha \hat{g}$ s–closed set in X.

Converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.6.18: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the sets $\{a\}, \{b\}$ are αgs-closed sets but not αgs-closed sets in X.

In general union of two $\alpha \hat{g}$ s–closed sets is not $\alpha \hat{g}$ s–closed set in X. Therefore we have the following results for the union of two $\alpha \hat{g}$ s–closed set s in X.

THEOREM 4.6.19: Let A and B be any two $\alpha \hat{g}$ s–closed sets in X. such that $D[A] \subseteq D\alpha[A]$ and $D[B] \subseteq D\alpha[B]$. Then $A \cup B$ is an $\alpha \hat{g}$ s–closed set in X.

PROOF: Let U be an αgs-open in X such that $A \cup B \subseteq U$, That is $A \subseteq U$ and $B \subseteq U$, then $s\text{Cl}(A) \subseteq U$ and $s\text{Cl}(B) \subseteq U$. however, for any set E, $D\alpha[E] \subseteq D[E]$ [8]. Therefore $\text{Cl}(A) = s\text{Cl} (A)$ and $Cl (B) = s\text{Cl} (B)$, and this shows that $\text{Cl} (A \cup B) = Cl(A) \cup Cl(B) \subseteq U$, That is $s\text{Cl} (A) \subseteq s\text{Cl} (B) \subseteq U$. since $s\text{Cl} (A \cup B) \subseteq \text{Cl} (A \cup B)$. Always we have , $s\text{Cl} (A \cup B) \subseteq \text{Cl} (A \cup B) = s\text{Cl} (A) \cup s\text{Cl} (B) \subseteq U$. That is. $s\text{Cl} (A \cup B) \subseteq U$. Hence $A \cup B$ is $\alpha \hat{g}$ s–closed set in X.

We recall the following result.
LEMMA 4.5.20: [85] Every closed set is αgs-closed in X.

THEOREM 4.5.21: Let $B \subseteq A$ where A is open and $\alpha \dot g$ s-closed. Then B is $\alpha \dot g$ s-closed relative to A if and only if B is $\alpha \dot g$ s-closed.

PROOF: Necessity. Since A is open and $\alpha \dot g$ s-closed, $s\text{Cl}_A(A) \subseteq A$. Since $B \subseteq A$, $s\text{Cl}_A(B) = s\text{Cl}_A(A) = A$. Now by [8], $A \cap s\text{Cl}_A(B) = s\text{Cl}_A(B)$.

If B is $\alpha \dot g$ s-closed relative to A, then $s\text{Cl}_A(B) \subseteq O$, whenever $B \subseteq O$ and O is αgs-open in A. The openness of A in X gives that O is also αgs-open in X. Therefore $B \subseteq O$ implies $s\text{Cl}_X(B) \subseteq O$, i.e. B is αgs-closed.

Sufficiency. If B is $\alpha \dot g$ s-closed, then $s\text{Cl}_X(B) \subseteq O$, whenever $B \subseteq O$ and O is αgs-open. This implies that $A \cap s\text{Cl}_X(B) \subseteq A \cap O$ whenever $B \subseteq A \cap O$.

Now since $A \cap U$ is αgs-open in X (Since arbitrary intersection of two αgs-open set is αgs-open[]). It is αgs-open in A and therefore $s\text{Cl}_A(B) \subseteq A \cap O$. B is $\alpha \dot g$ s – relative to A.

THEOREM 4.5.22: If A is $\alpha \dot g$ s-closed in X and $A \subseteq B \subseteq s\text{Cl}(A)$, then B is $\alpha \dot g$ s-closed in X.

PROOF: Let $B \subseteq U$, where U is αgs-open in X. Since A is $\alpha \dot g$ s-closed and $A \subseteq U$, it follows that $s\text{Cl}(A) \subseteq U$. By hypothesis, $B \subseteq s\text{Cl}(A)$ and hence $s\text{Cl}(B) \subseteq s\text{Cl}(A) \subseteq U$. Consequently $s\text{Cl}(B) \subseteq U$. So B become $\alpha \dot g$ s-closed.
THEOREM 4.5.23: A subset A of X is \(\alpha_{gs}\)-s-closed if and only if \(s\text{Cl}(A) \subseteq \alpha_{gs}\text{-ker}(A)\).

PROOF: Suppose that A is \(\alpha_{gs}\)-s-closed. Then \(s\text{Cl}(A) \subseteq U\), whenever U is \(\alpha_{gs}\)-open. Let \(x \in s\text{Cl}(A)\). If \(x \notin \alpha_{gs}\text{-ker}(A)\), then there is a \(\alpha_{gs}\)-open set in U containing A such that \(x \notin U\). Since U is an \(\alpha_{gs}\)-open set containing A, we have \(x \notin s\text{Cl}(A)\), a contradiction. Conversely, let \(s\text{Cl}(A) \subseteq \alpha_{gs}\text{-ker}(A)\). If U is any \(\alpha_{gs}\)-open set containing A, then \(s\text{Cl}(A) \subseteq \alpha_{gs}\text{ker}(A) \subseteq U\). Therefore A is \(\alpha_{gs}\)-s-closed.

THEOREM 4.5.24: If A is \(\alpha_{gs}\)-s-closed in X, then \(s\text{Cl}(A) - A\) contains no non empty closed set in X.

PROOF: Suppose that A is \(\alpha_{gs}\)-s-closed set. Let F be closed subset of \(s\text{Cl}(A) - A\), then \(A \subseteq F^c\), \(F^c\) is open. Therefore \(F^c\) is \(\alpha_{gs}\)-open in X [13], since A is \(\alpha_{gs}\)-s-closed, we have \(s\text{Cl}(A) \subseteq F^c\), consequently \(F \subseteq (s\text{Cl}(A))^c\), we have \(F \subseteq s\text{Cl}(A)\). Thus \(F \subseteq s\text{Cl}(A) \cap (s\text{Cl}(A))^c = \emptyset\) and therefore F is empty.

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.5.25: Let \(X = \{a, b, c\}\) and \(\tau = \{\emptyset, \{a\}, X\}\) Let \(A = \{a, b\}\). Then \(s\text{Cl}(A) - A\) does into contain any non empty closed set. But A is not \(\alpha_{gs}\)-closed in X.

THEOREM 4.5.26: A set A is \(\alpha_{gs}\)-s-closed set if and only if \(s\text{Cl}(A) - A\) contains no non empty \(\alpha_{gs}\)-closed set in X.
PROOF: Suppose that A is an $\alpha \cdot \check{g}$ s-closed set. Let U be an $\alpha g s$-closed subset of $sCl(A) - A$, then $A \subseteq U^c$. Since A is $\alpha \cdot \check{g}$ s-closed, $sCl(A) \subseteq U^c$ which implies $U \subseteq (sCl(A))^c$. Hence $U \subseteq sCl(A) \cap (sCl(A))^c = \emptyset$, which implies $U = \emptyset$.

Conversely, suppose A is a subset of X such that $sCl(A) - A$ does not contain any non empty $\alpha g s$-closed set. Let U be an $\alpha g s$-open set in X such that $A \subseteq U$. If $sCl(A) \not\subseteq U$, then $sCl(A) \subseteq U$ and $sCl(A) \cap U^c$ is a non empty $\alpha g s$-closed subset of $sCl(A) - A$. Therefore A is an $\alpha \cdot \check{g}$ s-closed set in X.

COROLLARY 4.5.27: Let A be a $\alpha \cdot \check{g}$ s-closed set of X. Then A is $\alpha g s$-closed iff $sCl(A) - A$ is $\alpha g s$-closed.

PROOF: Let A be $\alpha \cdot \check{g}$ s-closed which is also $\alpha g s$-closed. Then $sCl(A) - A = \emptyset$. That is $sCl(A) - A$ does not contain any non empty $\alpha g s$-closed subset of X. Since $sCl(A) - A$ is $\alpha g s$-closed, $sCl(A) - A = \emptyset$, which implies that A is $\alpha g s$-closed.

4.6. $\alpha g s$-OPEN SETS

DEFINITION 4.6.1: A set A is called $\alpha \cdot \check{g}$ s-open set if and only if A^c is $\alpha \cdot \check{g}$ s-closed set.

THEOREM 4.6.2: A set A is $\alpha \cdot \check{g}$ s-open if and only if $F \subseteq sInt A$ whenever F is $\alpha g s$-closed and $F \subseteq A$.

114
PROOF: Let A be an $\alpha \check{g}$ s-open set. Suppose $F \subset A$ where F is αgs-closed. By definition $X - A$ is $\alpha \check{g}$ s-closed set. Also $X - A$ contained in the αgs-open set $X - F$. This implies $sCl(X - A) \subset X - F$. Now $sCl(X - F) = X - \text{sint} A \subset X - F$. Now $sCl(X - A) = X - \text{sint} A$ [8]. Hence, $X - \text{sint} A \subset X - F$. That is $F \subset \text{sint} A$.

Conversely, if F is an αgs-closed set with $F \subset \text{sint} A$ whenever $F \subset A$, it follows that $X - A \subset X - F$ and $X - \text{sint} A \subset X - F$; that is $sCl (X-A) \subset X - F$. Hence $X - A$ is $\alpha \check{g}$ s-closed set and A becomes $\alpha \check{g}$ s-open. This proves the theorem.

REMARK 4.6.3: Every semi-open set is $\alpha \check{g}$ s-open but converse is not true.

EXAMPLE 4.6.4: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a,b,c\}, \{b,c,d\}, \{b,c\}\}$. Then the sets $\{b\}$ and $\{c\}$ are αgs-open but not semi-open sets in X.

THEOREM 4.6.5: Let A and B be semi-separated $\alpha \check{g}$ s-open sets, then $A \cup B$ is $\alpha \check{g}$ s-open.

PROOF: Let A and B be two semi-separated $\alpha \check{g}$ s-open sets, then we have $sCl (A) \cap B = A \cap sCl (B)$. If F is an $\alpha \check{g}$ s-closed set such that $F \subset A \cup B$, then $F \cap sCl(A) \subset sCl(A) \cap (A \cup B) = (sCl(A) \cap A) \cup (sCl(A) \cap B) = A \cup \emptyset = A$. Similarly, $F \cap sCl(B) \subset B$. Hence by Theorem 4.6.2 we have, $F \subset \text{sint} A$ and $F \subset \text{sint} B$ that is, $F \cap sCl(A) \subset F \cap \text{sint} A = \text{sint} A$ (since $F \subset B$) and $F \cap sCl(B) \subset \text{sint} (B)$. Now $F = F \cap (A \cup B) = (F \cap A) \cup (F \cap B) \subset (F \cap sCl(A)) \subset \text{sint} A \cup \text{sint} B \subset \text{sint} (A \cup B)$ [4].
Hence by Theorem 4.6.2, \(A \cup B \) is \(\alpha \hat{g} \) s-open.

THEOREM 4.6.6: If slnt \(A \subset B \subset A \) and \(A \) is \(\alpha \hat{g} \) s-open, then \(B \) is \(\alpha \hat{g} \) s-open.

PROOF: By hypothesis, \(A^c \subset B^c \subset (\text{slnt}(A))^c \) implies \(A^c \subset B^c \subset [X - \text{sCl}(A)]^c = \text{sCl}(A)^c \).

Now \(A^c \) is \(\alpha \hat{g} \) s-closed set and hence by Theorem 4.5.22, \(B^c \) is \(\alpha \hat{g} \) s-closed set. Therefore \(B \) is \(\alpha \hat{g} \) s-open.

LEMMA 4.6.7: For any \(A \subset X \), slnt \((\text{sCl}(A) - A) = \emptyset\).

THEOREM 4.6.8: If a set \(A \) is \(\alpha \hat{g} \) s-closed set, then \(\text{sCl}(A) - A \) is \(\alpha \hat{g} \) s-open.

PROOF: If \(A \) is an \(\alpha \hat{g} \) s-closed set and \(F \) is an \(\alpha \text{gs} \)-closed set such that \(F \subset \text{sCl}(A) - A \), then by Theorem 4.5.26, \(F = \emptyset \). Hence \(F \subset \text{sint} (\text{sCl}(A)- A) \) and by Theorem 4.6.2, \(\text{sCl}(A) - A \) is \(\alpha \hat{g} \) s-open.

4.7. \(\alpha \hat{g} \text{s} \)-SEPARATION AXIOMS

DEFINITION 4.7.1: A topological space \((X, \tau)\) is said to be \(\alpha \hat{g} \text{s} \)-semi-\(T_0 \) (briefly \(\alpha \hat{g} \text{s}-T_0 \)) if and only if to each pair of distinct points \(x, y \) of \(X \), there exists an \(\alpha \hat{g} \) s-open set containing one of the points but not the other.
EXAMPLE 4.7.2: Let \(X = \{ a, b, c \} \), \(\tau = (\emptyset, \{ a \}, X) \). Then the space \((X, \tau)\) is \(\alpha \hat{g} s-T_0 \).

REMARK 4.7.4 (i) Every \(\alpha- T_0 \) space is \(\alpha\hat{g}s - T_0 \) space. Since every \(\alpha \)-open set is \(\alpha\hat{g}s \) open.

(ii) Every \(\alpha\hat{g}s-T_0 \) space is \(gs - T_0 \) space. Since every \(\alpha\hat{g}s \) open set is \(sg \) open.

(iii) Every \(\alpha\hat{g}s-T_0 \) space is \(^*gs - T_0 \) space. Since every \(\alpha\hat{g}s \) open set is \(^*gs \) open.

We characterize \(\alpha \hat{g}s-T_0 \) spaces in the following.

THEOREM 4.7.5: A topological space \((X, \tau)\) is \(\alpha \hat{g}s-T_0 \) space if and only if \(\alpha \hat{g}s \) closures of distinct points are distinct.

PROOF. Let \(x, y \in X \) with \(x \neq y \) and \((X, \tau)\) is \(\alpha \hat{g}s- T_0 \) space. We will show that \(\alpha \hat{g}s Cl(\{x\}) \neq \alpha \hat{g}s Cl(\{y\}) \). Since \((X, \tau)\) is \(\alpha \hat{g}s- T_0 \), there exists a \(\alpha \hat{g}s \) open set \(G \) such that \(x \in G \) but \(y \notin G \). Also \(x \notin X - G \) and \(y \in X - G \), where \(X - G \) is \(\alpha \hat{g}s \) closed set in \((X, \tau)\). Now by Definition \(\{y\} \) is the intersection of all \(\alpha \hat{g}s \) closed sets which contain \(y \). Hence \(y \in \alpha \hat{g}s Cl(\{y\}) \) but \(x \notin \alpha \hat{g}s Cl(\{y\}) \) as \(x \notin X - G \). Therefore that \(\alpha \hat{g}s Cl(\{x\}) \neq \alpha \hat{g}s Cl(\{y\}) \).

Conversely, for any pair of distinct points \(x, y \in X \) and \(\alpha \hat{g}s Cl(\{x\}) \neq \alpha \hat{g}s Cl(\{y\}) \). Then there exists at least one point \(z \in X \) such that \(z \in \alpha \hat{g}s Cl(\{x\}) \) but \(z \notin \alpha \hat{g}s Cl(\{y\}) \). We claim that \(x \notin \alpha \hat{g}s Cl(\{y\}) \) because if \(x \in \alpha \hat{g}s Cl(\{y\}) \), then \(\{x\} \subseteq \alpha \hat{g}s Cl(\{y\}) \) implies \(\alpha \hat{g}s Cl(\{x\}) \subseteq \alpha \hat{g}s Cl(\{y\}) \). So, \(z \in \alpha \hat{g}s Cl(\{y\}) \), which is a contradiction. Hence \(x \notin \alpha \hat{g}s Cl(\{y\}) \). Now \(x \notin \alpha \hat{g}s Cl(\{y\}) \) implies \(x \notin X - \alpha \hat{g}s Cl(\{y\}) \).
which is an $\alpha \mathcal{g}$ s-open set in (X, τ) containing x but not y. Hence (X, τ) is a $\alpha \mathcal{g}$ s- T_0 space.

THEOREM 4.7.6: Every subspace of $\alpha \mathcal{g}$ s-T_0 space is a $\alpha \mathcal{g}$ s-T_0 space. In other words the property of being a $\alpha \mathcal{g}$ s-T_0 space is a hereditary property.

PROOF. Let (X, τ) be a topological space and (Y, τ^*) be a subspace of (X, τ) where τ^* is a relative topology. Let y_1, y_2 be two distinct points of Y and as $Y \subseteq X$, therefore these two are distinct points of X. Since (X, τ) is a $\alpha \mathcal{g}$ s-T_0 space, there exists a $\alpha \mathcal{g}$ s-open set G such that $y_1 \in G$ and $y_2 \in G$. Then by definition $G \cap Y$ is an $\alpha \mathcal{g}$ s-open set in (Y, τ^*) which contains y_1 but not y_2. Hence (Y, τ^*) is a $\alpha \mathcal{g}$ s-T_0 space.

We define the following map analogous to always open $,\alpha$-open map defined in [1].

DEFINITION 4.7.7: A map $f: (X, \tau) \to (Y,\sigma)$ is said to be always $\alpha \mathcal{g}$ s-open map if the image of every $\alpha \mathcal{g}$ s-open set is $\alpha \mathcal{g}$ s-open.

EXAMPLE 4.7.8:

1. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let f be the identity map. Then the map f is always an $\alpha \mathcal{g}$ s-open.

2. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity map. Then the map f is not always an $\alpha \mathcal{g}$ s-open since $f(\{a, c\}) = \{a, c\}$ which is not an $\alpha \mathcal{g}$ s-open set in (Y, σ).

118
THEOREM 4.7.9: The property of a space being an $\alpha\hat{g}$ s-To space is preserved under one-one, onto, always an $\alpha\hat{g}$ s-open mapping and hence is a topological property.

PROOF. Let (X, τ) be a an $\alpha\hat{g}$ s-T_0 space and (Y, σ) be any other topological space. Let $f : (X, \tau) \to (Y, \sigma)$ be a one-one, onto, always an $\alpha\hat{g}$ s-open mapping from X to Y. Let $y_1, y_2 \in Y$ with $y_1 \neq y_2$ and since f is one-one, onto, there exist distinct points $x_1, x_2 \in X$ such that $f(x_1) = y_1$, $f(x_2) = y_2$. Since (X, τ) is a an $\alpha\hat{g}$ s-T_0 space, there exists an $\alpha\hat{g}$ s-open set G in (X, τ) such that $x_1 \in G$ but $x_2 \notin G$. Since f is always an $\alpha\hat{g}$ s-open, $f(G)$ is an $\alpha\hat{g}$ s-open set containing $f(x_1)$ but not containing $f(x_2)$.

Thus there exists an $\alpha\hat{g}$ s-open set $f(G)$ in (Y, σ) such that $y_1 \in f(G)$ but $y_2 \notin f(G)$ and hence (Y, σ) is a an $\alpha\hat{g}$ s-T_0 space.

Again as the property of being an $\alpha\hat{g}$ s-To space is preserved under one-one, onto mapping it is also preserved under homoeomorphism and hence it is a topological property.

We define the following.

DEFINITION 4.7.10: A topological space (X, τ) is said to an $\alpha\hat{g}$-generalized semi-T_1 (briefly an $\alpha\hat{g}$ s-T_1) if and only if to each pair of distinct points x, y of X, there exists a pair of an $\alpha\hat{g}$ s-open sets, one containing x but not y and the other containing y but not x.

EXAMPLE 4.7.12:
1. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then the space (X, τ) is not $\alpha\hat{g}$ s-T_1.
2. Let $X = \{ a, b, c \}$, $\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \}$. Then the space (X, τ) is an $\alpha \hat{g} s-$ T_1 space.

REMARK 4.7.16:

i. Every α-T_1 space is an $\alpha \hat{g}$ $s-$ T_1 space. Since α-open set is $\alpha \hat{g}$ s-open.

ii. Every $\alpha \hat{g}$ $s-$ T_1 space is a $\alpha \hat{g}$ s-T_0 space.

iii. Every $\alpha \hat{g}$ $s-$ T_1 space is a gs-T_1 space. Since every $\alpha \hat{g}$ s-open set is gs-open in X.

The converse of the above remark need not be true as seen from the following examples.

EXAMPLE 4.7.12: Let $X = \{ a, b, c \}$, $\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \}$. Then the space (X, τ) is an $\alpha \hat{g}$ $s-$ T_1 space but not α-T_1 space.

EXAMPLE 4.7.12: Let $X = \{ a, b, c \}$ and $\tau = \{ \emptyset, \{a\}, X \}$. Then the space (X, τ) is gs-T_1 but not $\alpha \hat{g}$ $s-$ T_1 space.

THEOREM 4.7.13: If every singleton subset $\{x\}$ of X is $\alpha \hat{g}$ s-closed set, then (X, τ) is an $\alpha \hat{g}$ $s-$ T_1 space.

PROOF. Let x, y be any two distinct points of X so that $\{x\}$ and $\{y\}$ are $\alpha \hat{g}$ s- closed sets and as such $\{x\}^c$ and $\{y\}^c$ are $\alpha \hat{g}$ s- open. Thus $y \in \{x\}^c$ but $x \not\in \{x\}^c$ and $x \in \{y\}^c$ but $y \not\in \{y\}^c$. Hence by Definition, (X, τ) is an $\alpha \hat{g}$ s-T_1 space.

THEOREM 4.7.15: The product space of two $\alpha \hat{g}$ $s-$ T_0 spaces is an $\alpha \hat{g}$ $s-$ T_0 space.
PROOF. Let (X, τ_1) and (Y, τ_2) be two topological spaces and $(X \times Y, \tau)$ be their product space. Let x and y be two distinct points of X. Then (X, τ_1) is $\alpha \tilde{g} s$. T_0 space if and only if there exists an $\alpha \tilde{g} s$-open set G such that it contains only one of these two and not the other. We claim that $(X \times Y, \tau)$ is an $\alpha \tilde{g} s$. T_0 space. Let (x_1, y_1) and (x_2, y_2) be any two distinct points of $X \times Y$ then either $x_1 \neq x_2$ or $y_1 \neq y_2$. If $x_1 \neq x_2$ and (X, τ_1) being $\alpha \tilde{g} s$. T_0 space, then there exists an $\alpha \tilde{g} s$-open set G in (X, τ_1) such that $x_1 \in G$, $x_2 \notin G$. Hence $G \times Y$ is an $\alpha \tilde{g} s$-open set in $(X \times Y, \tau)$ containing (x_1, y_1) but not containing (x_2, y_2). Similarly if $y_1 \neq y_2$ and (Y, τ_2) being $\alpha \tilde{g} s$. T_0 space then there exists an $\alpha \tilde{g} s$-open set H in (Y, τ_2) such that $X \times H$ is an $\alpha \tilde{g} s$-open set in $(X \times Y, \tau)$ containing (x_1, y_1) but not (x_2, y_2). Hence corresponding to distinct points of $X \times Y$, there exists an $\alpha \tilde{g} s$-open set containing one but not the other so that $(X \times Y, \tau)$ is also an $\alpha \tilde{g} s$. T_0 space.

DEFINITION 4.7.16: A topological space (X, τ) is said to be $\alpha \tilde{g} s$. T_2 (briefly $\alpha \tilde{g} s$. T_2) if and only if to each pair of distinct points x, y of X, there exists a pair of disjoint $\alpha \tilde{g} s$-open sets, one containing x and the other containing y.

REMARK 4.7.17: i. Every α-T_2 space is a $\alpha \tilde{g} s$. T_2 space.

ii. Every $\alpha \tilde{g} s$. T_2 space is a gs-T_2 space.

iii. Every $\alpha \tilde{g} s$. T_2 space is an $\alpha \tilde{g} s$. T_1 spaces.

Next we have the following invariant properties.
THEOREM 4.7.18: Let $f : (X, \tau) \to (Y, \sigma)$ be $\alpha \cdot g$- irresolute and injective

i) If (Y, σ) is $\alpha \cdot g$-T$_1$, then (X, τ) is $\alpha \cdot g$-T$_1$ space.

ii) If (Y, σ) is $\alpha \cdot g$-T$_2$, then (X, τ) is $\alpha \cdot g$-T$_2$ space.

PROOF: (i). For each pair of points $x, y \in Y$ with $x \neq y$ and (Y, σ) is $\alpha \cdot g$-T$_1$, there exists a pair of $\alpha \cdot g$-open sets U, V such that $x \in U, y \in V$ and $x \not\in V, y \not\in U$. Since f is injective, $\alpha \cdot g$-irresolute, to each pair of distinct points $f^{-1}(x), f^{-1}(y)$ in X, there exists a pair of $\alpha \cdot g$-open sets $f^{-1}(U), f^{-1}(V)$ such that $f^{-1}(x) \in f^{-1}(U), f^{-1}(y) \in f^{-1}(V)$ and $f^{-1}(x) \not\in f^{-1}(V), f^{-1}(y) \not\in f^{-1}(U)$. Hence (X, τ) is $\alpha \cdot g$-T$_1$.

(ii) Proof is similar to (i).

THEOREM 4.7.19 In a topological space (X, τ), the following statements are equivalent:

(i) (X, τ) is $\alpha \cdot g$-T$_2$.

(ii) Let $x \in X$. For each $y \neq x$, there exists an $\alpha \cdot g$-open set U such that $x \in U$ and $Y \not\in \alpha \cdot g$ Cl(U).

(iii) For each $x \in X$, $\cap \{ \alpha \cdot g$ Cl$(U) \mid U$ is $\alpha \cdot g$-open and $x \in U \} = \{x\}$.

(iv) The diagonal $\Delta = \{ (x, x) \mid x \in X \}$ is $\alpha \cdot g$-s-closed set in $X \times X$.

122
PROOF. (i) → (ii). Assume that the topological space \((X, \tau)\) is \(\alpha \hat{g} s\text{-}T_2\). Let \(x \in X\) and \(y \neq x\), then there are disjoint \(\alpha \hat{g} s\text{-}open\) sets \(U\) and \(V\) such that \(x \in U\), \(y \in V\). Clearly, \(V^c\) is \(\alpha \hat{g} s\text{-}closed\) set, \(\alpha \hat{g} s\text{Cl}(U) \subseteq V^c\), \(y \notin V^c\) and therefore \(y \notin \alpha \hat{g} s\text{Cl}(U)\).

(ii) → (iii). For each \(y \neq x\), there exists an \(\alpha \hat{g} s\text{-}open\) \(U\) such that \(x \in U\) and \(y \notin \alpha \hat{g} s\text{Cl}(U)\). So \(y \notin \cap \{ \alpha \hat{g} s\text{Cl}(U) / U \text{ is } \alpha \hat{g} s\text{-}open \text{ in } X \text{ and } x \in U \} = \{ x \} \).

(iii) → (iv). We claim that \(\Delta^c\) is \(\alpha \hat{g} s\text{-}open\) in \(X \times X\). Let \((x, y) \notin \Delta\). Then \(y \neq x\) and since \(\cap \{ \alpha \hat{g} s\text{Cl}(U) / U \text{ is } \alpha \hat{g} s\text{-}open \text{ in } (X, \tau) \text{ and } x \in U \} = \{ x \}\), there is some \(\alpha \hat{g} s\text{-}open\) set \(U\) in \((X, \tau)\) with \(x \in U\) and \(y \notin \alpha \hat{g} s\text{Cl}(U)\).

Since \(U \cap \{ \alpha \hat{g} s\text{Cl}(U) \}^c = \emptyset\), \((U \times \{ \alpha \hat{g} s\text{Cl}(U) \})^c\) is an \(\alpha \hat{g} s\text{-}open\) set such that \((x, y) \in U \times \{ \alpha \hat{g} s\text{Cl}(U) \}^c \subseteq \Delta^c\).

(iv) → (i). If \(y \neq x\), then \((x, y) \notin \Delta\) and thus there exist \(\alpha \hat{g} s\text{-}open\) sets \(U\) and \(V\) such that \((x, y) \in U \times V\) and \((U \times V) \cap \Delta = \emptyset\). Thus for the \(\alpha \hat{g} s\text{-}open\) sets \(U\) and \(V\) we have \(x \in U\), \(y \in V\) and \(U \cap V = \emptyset\). Hence \((X, \tau)\) is \(\alpha \hat{g} s\text{-}T_2\).

THEOREM 4.7.20: Let \(X\) be an arbitrary space, \(R\) an equivalence relation in \(X\) and \(p: X \rightarrow X / R\), the identification map. If \(R \subseteq X \times X\) is \(\alpha \hat{g} s\text{-}closed\) in \(X \times X\) and \(p\) is an always \(\alpha \hat{g} s\text{-}open\) map, then \(X / R\) is \(\alpha \hat{g} s\text{-}T_2\), and \(V\) we have \(x \in U\), \(y \in V\) and \(U \cap V = \emptyset\). Hence \((X, \tau)\) is \(\alpha \hat{g} s\text{-}T_2\).

PROOF: Let \(p(x), p(y)\) be distinct members of \(X / R\). Since \(x\) and \(y\) are not related, \(R \subseteq X \times X\) is \(\alpha \hat{g} s\text{-}closed\) set in \(X \times X\), there are \(\alpha \hat{g} s\text{-}open\) sets \(U\) and \(V\) such that \(x \in U\), \(y \in V\) and \(U \times V \subseteq R^c\). Thus \(p(U), p(V)\) are
disjoint and also $\alpha \hat{g}$ s-open in X / R since p is always $\alpha \hat{g}$ s-open. Hence X / R is an $\alpha \hat{g}$ s-T_2 space.

DEFINITION 4.7.21: A topological space (X, τ) is called;

i. α generalized semi-R_0 (briefly $\alpha \hat{g}$ s-R_0) if for each $\alpha \hat{g}$ s-open set U and $x \in U$ implies $\alpha \hat{g}$ s$\text{Cl}(x) \subseteq U$,

ii. α-generalized semi-R_1 (briefly $\alpha \hat{g}$ s-R_1) if for $x, y \in X$ with $\alpha \hat{g}$ s$\text{Cl}({x}) \neq \alpha \hat{g}$ s$\text{Cl}({y})$, there exist disjoint $\alpha \hat{g}$ s-open sets U and V such that $\alpha \hat{g}$ s$\text{Cl}({x}) \subseteq U$ and $\alpha \hat{g}$ s$\text{Cl}({x}) \subseteq V$.

EXAMPLE 4.7.22:

i. Let $X = \{a, b, c\}, \tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then the space (X, τ) is not a $\alpha \hat{g}$ s-R_0 space.

ii. Let $X = \{a, b, c\}, \tau = \{ \emptyset, \{a\}, \{b, c\}, X\}$. Then the space (X, τ) is $\alpha \hat{g}$ s-R_1 space.

iii. Let $X = \{a, b, c\}, \tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the space (X, τ) is $\alpha \hat{g}$ s-R_0, and $\alpha \hat{g}$ s-R_1 space.

REMARK 4.7.23 i) Every α-R_0 space is an $\alpha \hat{g}$ s-R_0 space.

ii) Every α-R_1 space is an $\alpha \hat{g}$ s-R_1 space.

iii) Every $\alpha \hat{g}$ s-R_1 space is an $\alpha \hat{g}$ s-R_0 space.

THEOREM 4.7.24: For a topological space (X, τ), the following statements are equivalent,

i. (X, τ) is an $\alpha \hat{g}$ s-T_2 space.

ii. (X, τ) is $\alpha \hat{g}$ s-R_1 and $\alpha \hat{g}$ s-T_0 space.

iii. (X, τ) is $\alpha \hat{g}$ s-R_1 and $\alpha \hat{g}$ s-T_0 space.
4.8. αġs-CONTINUOUS MAPS IN TOPOLOGICAL SPACES

In this section, we introduce αġs-continuous maps, pre-αġs continuous maps in topological spaces and study some of their properties.

DEFINITION 4.8.1: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be αġs – semi continuous (αġs -continuous) if the inverse image of every closed set in \(Y \) is αġs-closed in \(X \).

EXAMPLE 4.8.2: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\} \). Let \(f \) be identity map then \(f \) is αġs-continuous.

THEOREM 4.8.2: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) αġs-continuous if and only if \(f^{-1}(V) \) is αġs-open in \(X \) for every open set \(V \) in \(Y \).

PROOF: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be αġs-continuous and \(V \) be an open set in \(Y \). Then \(V^c \) is closed set in \(Y \) and since \(f \) is αġs-continuous, \(f^{-1}(V^c) \) is αġs-closed set in \(X \). But \(f^{-1}(V^c) = (f^{-1}(V))^c \) so \(f^{-1}(V) \) is αġs-open in \(X \).

Conversely, assume that \(f^{-1}(V) \) is αġs-open in \(X \) for each open set \(V \) in \(Y \). Let \(F \) be a closed set in \(Y \). Then \(F^c \) is open in \(Y \) and by assumption \(f^{-1}(F^c) \) is αġs-open in \(X \), since \(f^{-1}(F^c) = (f^{-1}(F))^c \), we have \(f^{-1}(F) \) is αġs-closed set in \(X \) and so \(f \) is αġs-continuous.

DEFINITION 4.8.5: A space \((X, \tau) \) is said to be \(T_{αġs} \) space if every αġs-closed set in it is closed set.
EXAMPLE 4.8.6: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$. Then (X, τ) is $T_{\alpha\alpha}$ space.

EXAMPLE 4.8.7: Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then the set $\{c, d\}$ is $\alpha\beta$-closed but not closed in (X, τ).

THEOREM 4.8.8: Let X and Z be topological spaces and Y be a $T_{\alpha\alpha}$ space. Then the composition $gof : X \rightarrow Z$ of the $\alpha\beta$-continuous maps $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ is $\alpha\beta$-continuous.

PROOF: Let F be any closed set in Z. As g is $\alpha\beta$-continuous and Y is a $T_{\alpha\alpha}$ space, then $g^{-1}(F)$ is closed set in Y. Since f is $\alpha\beta$-continuous and $g^{-1}(F)$ is closed set in Y, $f^{-1}(g^{-1}(F))$ is $\alpha\beta$-closed set in X. But $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ and so gof is $\alpha\beta$-continuous.

THEOREM 4.8.9: If $f : X \rightarrow Y$ is $\alpha\beta$-continuous and $g : Y \rightarrow Z$ is continuous, then their composition $gof : X \rightarrow Z$ is $\alpha\beta$-continuous.

PROOF: Let F be any closed set in Z. Since g is continuous, $g^{-1}(F)$ is closed set in Y. Since f is $\alpha\beta$-continuous and $g^{-1}(F)$ is closed set in Y, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is $\alpha\beta$-closed set in X and f is $\alpha\beta$-continuous.

DEFINITION 4.8.10: A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is is called pre-$\alpha\beta$-continuous if $f^{-1}(V)$ is $\alpha\beta$-closed set in X for every α-closed set V of Y.
EXAMPLE 4.8.11: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) as an identity map. Then \(f \) is \(\preorder {\alpha \hat{g}} \) s-continuous.

THEOREM 4.8.12: If a map \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha \)-irresolute, then it is \(\preorder {\alpha \hat{g}} \) s-continuous, but not conversely.

PROOF: Let \(V \) be any \(\alpha \)-closed set in \(Y \). Since \(f \) is \(\alpha \)-irresolute, \(f^{-1}(V) \) is \(\alpha \)-closed set in \(X \). Every \(\alpha \)-closed set is \(\preorder {\alpha \hat{g}} \) s-closed set in \(X \). So \(f^{-1}(V) \) is \(\preorder {\alpha \hat{g}} \) s-closed set in \(X \). Therefore \(f \) is \(\preorder {\alpha \hat{g}} \) s-continuous.

However, the converse of the above theorem need not be true as seen from the following example.

EXAMPLE 4.8.13: Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\} \), \(\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) be an identity map. Then \(f \) is \(\preorder {\alpha \hat{g}} \) s-continuous, but not \(\alpha \)-irresolute because the inverse image of the \(\alpha \)-closed set \(\{b\} \) in \(Y \) is \(\{b\} \) which is not \(\alpha \) closed set in \(X \).

REMARK 4.8.14: The composition of two \(\preorder {\alpha \hat{g}} \) s-continuous maps need not be \(\preorder {\alpha \hat{g}} \) s-continuous as seen from the following example.

EXAMPLE 4.8.15: Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}, X\) \(\sigma = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{a,c\}, Y\} \) and \(\eta = \{\emptyset, \{a\}, Z\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a)=c, f(b)=b, f(c)=a \) be the identity map. Then \(f \) and \(g \) are \(\preorder {\alpha \hat{g}} \) s-continuous but their composition map \(g \circ f : (X, \tau) \to (Z, \eta) \) is not \(\preorder {\alpha \hat{g}} \) s-continuous because \(\emptyset = \{c\} \) is
\(\alpha \)-closed set in \(Z \), but \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) = f^{-1}(g^{-1}(\{c\})) = f^{-1}(\{a\}) = a \) is not \(\alpha g s \)-closed set in \(X \).

THEOREM 4.8.16: Let \(X \) and \(Z \) be topological spaces and \(Y \) be a \(T_{\alpha g s} \)-space. Then the composition map \(g \circ f : X \to Z \) of the pre \(\alpha g s \)-continuous maps \(f : X \to Y \) and \(g : Y \to Z \) is pre-\(\alpha g s \)-continuous.

PROOF: Let \(F \) be any \(\alpha \)-closed set in \(Z \). As \(g \) is pre-\(\alpha g s \)-continuous and \(Y \) is a \(T_{\alpha g s} \) space, then \(g^{-1}(F) \) is \(\alpha g s \)-closed set in \(Y \). Since \(Y \) is \(T_{\alpha g s} \)-space every \(\alpha g s \)-closed is closed in \(Y \). Hence \(g^{-1}(F) \) is \(\alpha \)-closed in \(Y \). Hence every closed set in \(\alpha \)-closed set in \(Y \), because \(g^{-1}(F) \) is \(\alpha \)-closed set in \(X \). Since \(f \) is pre-\(\alpha g s \)-continuous and \(g^{-1}(F) \) is a \(\alpha \)-closed set in \(Y \), \(f^{-1}(g^{-1}(F)) \) is \(\alpha g s \)-closed set in \(X \). But \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) and so \(g \circ f \) is pre-\(\alpha g s \)-continuous.

3. 9. \(\alpha g s \)-IRRESOLUTE MAPS

In this section, we introduce and study the concept of \(\alpha g s \)-irresolute maps in topological spaces.

DEFINITION 4.9.1: A map \(f : X \to Y \) is called \(\alpha g s \)-irresolute map if the inverse image of every \(\alpha g s \)-closed set in \(Y \) is \(\alpha g s \)-closed set in \(X \).

REMARK 4.9.2: The following examples show that the notions of irresolute maps and \(\alpha g s \) irresolute maps are independent.

EXAMPLE 4.9.3: Let \(X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}, \sigma = \{\emptyset, \{a\}, \{a, b\}, Y\} \). Then the identity map on \(X \) is \(\alpha g s \)-irresolute map, but
it is not irresolute. Since $f^{-1}(b, c) = \{b, c\}$ which is not semiclosed in X where as $\{b, c\}$ is semiclosed in Y.

EXAMPLE 4.9.3: Let $X = Y = \{a, b, c\}$, $\mathcal{T} = / \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X \}$, $\mathcal{S} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Then the identity map $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ is irresolute but not $\alpha \cdot \alpha \cdot s$-irresolute.

THEOREM 4.9.4: A map $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ is $\alpha \cdot \alpha \cdot s$-irresolute map if and only if the inverse image of every $\alpha \cdot \alpha \cdot s$ open set in Y is $\alpha \cdot \alpha \cdot s$ open set in X.

PROOF: Let $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ be $\alpha \cdot \alpha \cdot s$-irresolute and U be an $\alpha \cdot \alpha \cdot s$-open set in Y. Then U^c is $\alpha \cdot \alpha \cdot s$-closed set in Y and since f is $\alpha \cdot \alpha \cdot s$ irresolute, $f^{-1}(U^c)$ is $\alpha \cdot \alpha \cdot s$-open in X. But $f^{-1}(U^c) = (f^{-1}(U))^c$ and so $f^{-1}(U)$ is $\alpha \cdot \alpha \cdot s$-open in X.

Conversely, assume that $f^{-1}(U)$ is $\alpha \cdot \alpha \cdot s$-open in X. For each $\alpha \cdot \alpha \cdot s$-open set U in Y, let F be $\alpha \cdot \alpha \cdot s$-closed set in Y. Then F^c is $\alpha \cdot \alpha \cdot s$-open in Y and by assumption $f^{-1}(F^c)$ is $\alpha \cdot \alpha \cdot s$-open in X. Since $f^{-1}(F^c) = (f^{-1}(F))^c$, we have $f^{-1}(F)$ is $\alpha \cdot \alpha \cdot s$ closed in X and so f is $\alpha \cdot \alpha \cdot s$-irresolute.

THEOREM 4.9.5: If a map $f: (X, \mathcal{T}) \to (Y, \mathcal{S})$ $\alpha \cdot \alpha \cdot s$-irresolute, then it is $\alpha \cdot \alpha \cdot s$-continuous but not conversely.

PROOF: Trivial.

However, the converse of the above theorem need not be true as seen from the following example.
EXAMPLE 4.9.6: Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$, $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Then the identity map $f: (X, \tau) \rightarrow (Y, \sigma)$ is $\alpha\hat{\gamma}$ s-continuous but not $\alpha\hat{\gamma}$ s-irresolute.

THEOREM 4.9.7: Let (X, τ) be any topological space, (Y, σ) be a $T_{\alpha\hat{g}s}$ space and $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map. Then the following are equivalent:

(i) f is $\alpha\hat{\gamma}$ s-irresolute.

(ii) f is $\alpha\hat{\gamma}$ s-continuous.

PROOF: Every $\alpha\hat{\gamma}$ s-irresolute map is $\alpha\hat{\gamma}$ s-continuous. Hence (i) \Rightarrow (ii). Let F be an $\alpha\hat{\gamma}$ s-closed set in (Y, σ). Since (Y, σ) is a $T_{\alpha\hat{g}s}$ space, F is closed set in (Y, σ) and by hypothesis $f^{-1}(F)$ is $\alpha\hat{g}s$-closed set in X. Therefore f is $\alpha\hat{\gamma}$ s-irresolute. Hence (ii) \Rightarrow (i).

DEFINITION 4.9.8: A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is pre-$\alpha\hat{g}s$-open if $f(U)$ is $\alpha\hat{g}s$ in Y for every $\alpha\hat{g}s$ open set U in X.

THEOREM 4.9.9: If $f: (X, \tau) \rightarrow (Y, \sigma)$ is bijective, pre-$\alpha\hat{g}s$ open and pre-$\alpha\hat{\gamma}$ s continuous, then f is $\alpha\hat{\gamma}$ s-irresolute.

PROOF: Let A be $\alpha\hat{\gamma}$ s-closed set in Y. Let U be any $\alpha\hat{g}s$-open set in X such that $A \subseteq f(U)$. Since A is $\alpha\hat{\gamma}$ s-closed set and $f(U)$ is $\alpha\hat{\gamma}$ s-open in Y, $sCl(A) \subseteq f(U)$ holds and hence $f^{-1}(sCl(A)) \subseteq U$. Since f is pre-$\alpha\hat{\gamma}$ s-continuous and $sCl(A)$ is semiclosed set in Y is $\alpha\hat{\gamma}$ s-closed set in X, we have $sCl(f^{-1}(sCl(A))) \subseteq U$ and so $sCl(f^{-1}(A)) \subseteq U$. Therefore $f^{-1}(A)$ is $\alpha\hat{g}s$-closed set in X and hence f is $\alpha\hat{g}s$ irresolute.
COROLLARY 4.9.10: If $f : (X, \tau) \to (Y, \sigma)$ is bijective, pre-$\alpha\beta\gamma$ and α-irresolute. Then f is $\alpha\beta\gamma$-irresolute.

PROOF: Follows from theorem 4.8.12 and theorem 4.9.9.

THEOREM 4.9.11: If $f : (X, \tau) \to (Y, \sigma)$ is bijective, α-closed set and $\alpha\beta\gamma$ irresolute maps, then the inverse map $f^{-1} : (Y, \sigma) \to (X, \tau)$ is $\alpha\beta\gamma$-irresolute.

PROOF: Let A be $\alpha\beta\gamma$-closed set in X. Let $(f^{-1})(A) = f(A) \subseteq U$ where U is $\alpha\beta\gamma$-open in Y. Then $A \subseteq f^{-1}(U)$ holds. Since $f^{-1}(U)$ is $\alpha\beta\gamma$ open in X and A is $\alpha\beta\gamma$-closed set in X, $sCl(A) \subseteq f^{-1}(U)$ and hence $f(sCl(A)) \subseteq U$. Since f is α-closed and $sCl(A)$ is α-closed set in X, $f(sCl(A))$ is closed set in Y. So $f(sCl(A))$ is $\alpha\beta\gamma$-closed set in Y. Therefore $sCl(f(sCl(A))) \subseteq U$ and hence $sCl(f(A)) \subseteq U$. Thus $f(A)$ is $\alpha\beta\gamma$-closed set in Y and so f^{-1} is $\alpha\beta\gamma$-irresolute.

THEOREM 4.9.12: Let X, Y, Z be topological spaces and $f : (X, \tau) \to (Y, \sigma); \quad g : (Y, \sigma) \to (Z, \eta)$ be two maps. Their composition $gof : (X, \tau) \to (Z, \eta)$ is $\alpha\beta\gamma$-continuous

(i) if f is $\alpha\beta\gamma$-irresolute and g is $\alpha\beta\gamma$-continuous or,

(ii) if f is $\alpha\beta\gamma$-continuous and g is continuous.

PROOF: (i) Let V be an open set in Z. Then $g^{-1}(V)$ is $\alpha\beta\gamma$-open. Since f is $\alpha\beta\gamma$ irresolute $f^{-1}(g^{-1}(V))$ is $\alpha\beta\gamma$-open. But $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$. Therefore (gof) is $\alpha\beta\gamma$-continuous.
(iii) Let \(U \) be a closed set in \(Z \). Then \(g^{-1}(U) \) be a closed set in \(Y \) because \(g \) is continuous. Since \(f \) is \(\alpha \, \varepsilon \, s \)-continuous \(f^{-1}(g^{-1}(U)) \) is \(\alpha \, \varepsilon \, s \)-closed set in \(X \). But \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \). Therefore \((gof) \) is \(\alpha \, \varepsilon \, s \)-continuous.

THEOREM 4.9.13: Let \(X, Y, Z \) be topological spaces and if \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be two maps. Their composition \(gof : (X, \tau) \rightarrow (Z, \eta) \) is \(\alpha \, \varepsilon \, s \)-irresolute if \(f \) and \(g \) are \(\alpha \, \varepsilon \, s \)-irresolute maps.

PROOF: Trivial.

3.10. ON \(\alpha \, \varepsilon \, s \)-OPEN MAPS AND \(\alpha \, \varepsilon \, s \)-CLOSED MAPS

In this section, we introduce and study \(\alpha \, \varepsilon \, s \)-open maps and \(\alpha \, \varepsilon \, s \)-closed maps in topological spaces and study some of their properties.

DEFINITION 4.10.1: A map \(f : X \rightarrow Y \) is said to be \(\alpha \, \varepsilon \, s \)-open (\(\alpha \, \varepsilon \, s \)-closed set) if \(f(V) \) is \(\alpha \, \varepsilon \, s \)-open (\(\alpha \, \varepsilon \, s \)-closed set) in \(Y \) for every open (closed) set \(V \) in \(X \).

THEOREM 4.10.2: A map \(f : X \rightarrow Y \) is \(\alpha \, \varepsilon \, s \)-closed set if and if for each subset \(S \) of \(Y \) and for each open set \(U \) containing \(f^{-1}(S) \) there is an \(\alpha \, \varepsilon \, s \)-open set \(V \) of \(Y \) such that \(S \subseteq V \) and \(f^{-1}(V) \subseteq U \).

PROOF. Assume that \(f \) is \(\alpha \, \varepsilon \, s \)-closed. Let \(S \) be a subset of \(Y \) and \(U \) be an open set of \(X \) such that \(S \subseteq f(U) \). Let \(f^{-1}(S) \subseteq U \). Now, \(U^c \) is a closed set in \(Y \). Then \(f(U^c) \) is \(\alpha \, \varepsilon \, s \)-closed set in \(X \), since \(f \) is \(\alpha \, \varepsilon \, s \)-closed set. So
Y–f(U°) is αgs-open in X. Thus V = f(U°) is an αgs-open set containing S such that f⁻¹(V) ⊆ U.

Conversely, suppose that F is a closed set in X. Then f⁻¹(Y – f(F)) ⊆ X – F and X – F is open. By hypothesis, there is an αgs-open set V of Y such that Y – f (F) ⊆ V and f⁻¹ (V) ⊆ X – F and so f ⊆ X – f⁻¹ (V) . Hence Y – V ⊆ f (F) ⊆ f (X – f⁻¹ (V)) ⊆ Y – V which implies that f (F) = Y – V. Since Y – V is αgs-closed, f(F) is αgs-closed and thus f is αgs-closed set.

PROPOSITION 4.10.3: If f : (X, x) → (Y, σ) is αgs irresolute , pre semi closed and A is an αgs-closed subset of X, then f (A) is αgs-closed set.

PROOF: Let U be a αgs-open set in Y such that f (A) ⊆ U. Since f is αgs irresolute, f⁻¹(U) is a αgs-open set containing A ie. A ⊆ f⁻¹ (U). Hence sCl(A) ⊆ f⁻¹ (U), as A is αgs-closed set in X. Since f is pre semi closed, f(sCl(A)) is semi-closed set. So, f(sCl(A)) is an αgs-closed set contained in the αgs-open set U ie. f(sCl (A)) ⊆ U. Now sCl f((A)) ⊆ sCl (f(sCl (A))) = f(sCl (A)) ⊆ U. Hence sCl f(A) ⊆ U. Therefore f(A) is an αgs-closed set in Y.

The composition of two αgs-closed maps need not be αgs-closed as seen from the following example.

EXAMPLE 4.10.5: Let X = Y = Z = { a, b, c} , x = { ∅, {a}, {b}, { a,b} , X } , σ = { ∅, {a}, {b} , {a,c} , {a, b}, Y }, and η= { ∅, {a,b}, Z }. Let f : (X, τ) → (Y, σ) be the identity map and define g : (Y,σ) → (Z,η) by g(a) = g(b, g(b)=a, g(c)=c The both f and g are αgs-closed maps but their composition g ° f : (X, τ)→ (Z, η) is not an αgs-closed map . Since for
the closed set \(\{c\} \) in \((X, \tau)\), \(g \circ f(\{c\}) = g(f(\{c\})) = g(\{c\}) = \{a\}\), which is not \(\alpha\)gs – closed set in \((Z, \eta)\).

COROLLARY 4.10.6: Let \(f : (X, \tau) \to (Y, \sigma)\) be an \(\alpha\)gs closed map and \(g : (Y, \sigma) \to (Z, \eta)\) be pre-\(\alpha\) -closed map and \(\alpha\)gs irresolute , then their composition \(g \circ f : (X, \tau) \to (Z, \eta)\) is \(\alpha\)gs – closed .

PROOF: Let \(A\) be a closed set of \((X, \tau)\). Then by hypothesis \(f(A)\) is an \(\alpha\)gs closed set in \((Y, \sigma)\). Since \(g\) is pre semi closed and irresolute , by proposition 4.10.3. \(g(f(A)) = (g \circ f)(A)\) is \(\alpha\)gs- closed in \((Z, \eta)\). Hence \((g \circ f)\) is \(\alpha\)gs- closed map.

THEOREM 4.10.7: Let \(f : (X, \tau) \to (Y, \sigma)\) and \(g : (Y, \sigma) \to (Z, \eta)\) be \(\alpha\)gs-closed maps and \((Y, \sigma)\)be a \(T_{\alpha\)gs space . Then their composition \(g \circ f\) is \(\alpha\)gs – closed map .

PROOF: Let \(A\) be a closed set of \((X, \tau)\). Then by hypothesis \(f(A)\) is an \(\alpha\)gs- closed set in \((Y, \sigma)\). Since \((Y, \sigma)\) is a \(T_{\alpha\)gs space , \(f(A)\) is closed in \((Y, \sigma)\). Also by assumption \(g(f(A))\) is \(\alpha\)gs- closed map in \((Z, \eta)\). Hence \((g \circ f)\) is \(\alpha\)gs – closed map .

THEOREM 4.10.8: The composition of a closed map \(f : Z \to Y\) and an \(\alpha\)gs - closed map \(g : Y \to Z\) is an \(\alpha\)gs – closed map from \(X \to Z\).

PROOF: Let \(A\) be a closed set of \((X, \tau)\). Then by hypothesis \(f(A)\) is an \(\alpha\)gs – closed set in \((Y, \sigma)\). Since \((Y, \sigma)\) is a \(T_{\alpha\)gs space, \(f(A)\) is closed in \((Y, \sigma)\). Also by assumption \(g(f(A))\) is \(\alpha\)gs- closed map in \((Z, \eta)\). Hence \((gof)\) is \(\alpha\)gs-closed map .
THEOREM 4.10.9: The composition of a closed map \(f: X \to Y \) and an \(\alpha g s \) -closed \(\alpha g s \) -closed map from \(X \to Z \).

PROOF: Trivial.

THEOREM 4.10.11: Let \(f: (X, \tau) \to (Y, \sigma) \) and \(g: (Y, \sigma) \to (Z, \eta) \) be two mappings such that their composition \(g \circ f: (X, \tau) \to (Z, \eta) \) is an \(\alpha g s \) -closed mapping. Then the following statements are true.

i) If \(f \) is continuous and surjective, then \(g \) is \(\alpha g s \)-closed map

ii) If \(g \) is irresolute and injective: \((X, \tau) \to (Y, \sigma) \), then \(g \) is \(\alpha g s \)-closed map.

PROOF: (i). Let \(A \) be a closed set in \((Y, \sigma) \). Then \(f^{-1}(A) \) is closed in \((X, \tau) \) as \(f \) is continuous. Since \(g \circ f \) is \(\alpha g s \) -closed map and \(f \) is surjective, \((g \circ f)(f^{-1}(A)) = g(A) \) is \(\alpha g s \) -closed in \((Z, \eta) \). Therefore \(g \) is an \(\alpha g s \) -closed map in \(X \).

(ii). Let \(H \) be a closed set of \((X, \tau) \). Since \(g \circ f \) is \(\alpha g s \) closed map, \((g \circ f)(H) \) is an \(\alpha g s \) -closed set in \((Z, \eta) \). Since \(g \) is \(\alpha g s \) – irresolute, \(g^{-1}(g \circ f)(H) = (g \circ f(H)) = f(H) \) is \(\alpha g s \)-closed in \((Y, \sigma) \), since \(g \) is injective. Thus \(f \) is an \(\alpha g s \)-closed map in \(X \).

PROPOSITION 4.10.12: For any bijection \(f: (X, \tau) \to (Y, \sigma) \), the following statements are equivalent.

(i) inverse of \(f \) is \(\alpha g s \)-continuous .

(ii) \(f \) is an \(\alpha g s \)-open map.

(iii) \(f \) is an \(\alpha g s \)-closed map.

PROOF. (i) \(\to \) (ii): Let \(U \) be an open set of \((X, \tau) \). By assumption \((f^{-1})^{-1}(U) = f(U) \) is \(\alpha g s \) –open in \((Y, \sigma) \) and so \(f \) is \(\alpha g s \)-open.
(ii) \rightarrow (iii): Let \(F \) be a closed set of \((X, \tau) \). Then \(F^c \) is open in \((X, \tau) \). By assumption \(f(F^c) \) is \(\alpha\tilde{g}s \)-open in \((Y, \sigma) \) and therefore \(f(F) \) is \(\alpha\tilde{g}s \)-closed map in \((Y, \sigma) \). Hence \(f \) is \(\alpha\tilde{g}s \)-closed map.

(iii) \rightarrow (i). Let \(F \) be a closed set in \((X, \tau) \). By assumption \(f(F) \) is \(\alpha\tilde{g}s \) - closed in \((Y, \sigma) \). But \(f(F) = (f^{-1})^{-1}(F) \) and therefore \(f \) is \(\alpha\tilde{g}s \) - continuous.

3.11. ON \(\alpha\tilde{g}s \) - NORMAL AND REGULAR SPACES.

In this section we introduce and study \(\alpha\tilde{g}s \)-normal and \(\alpha\tilde{g}s \) regular spaces.

DEFINITION 4.11.1: For every set \(A \subseteq X \), we define the \(\alpha\tilde{g}s \) closure of intersection of all \(\alpha\tilde{g}s \)-closed sets containing \(A \). In symbols, \(\alpha\tilde{g}s \) Cl \((A) = \cap \{ F: A \subseteq F \text{ where } F \text{ is } \alpha\tilde{g}s \text{ closed in } (X, \tau) \} \)

4.12. \(\alpha\tilde{g}s \) - NORMAL SPACES.

DEFINITION 4.12.1: A space \((X, \tau) \) is said to be \(\alpha\tilde{g}s \) - normal if for any pair of disjoint \(\alpha\tilde{g}s \)-closed sets \(A \) and \(B \) in \(X \), there exist disjoint open sets \(U \) and \(V \) in \(X \) such that \(A \subseteq U \) and \(B \subseteq V \).

REMARK 4.12.2: It is obvious that every \(\alpha\tilde{g}s \) -normal space is normal. However the converse is not true as seen from the following example

EXAMPLE 4.12.3: Let \(X = \{ a, b, c, d \} \) and \(\tau = \{ \emptyset, \{ a, d \}, \{ b, c \}, X \} \). Then the space \((X, \tau) \) is normal, but not \(\alpha\tilde{g}s \) -normal.
THEOREM 4.12.4: The following are equivalent for a space \((X, \tau)\).

(i) \((X, \tau)\) is normal.

(ii) For any disjoint closed sets \(A\) and \(B\), there exist disjoint \(\alpha\)-\(\alpha\)-open sets \(U, V\) such that \(A \subseteq U\) and \(B \subseteq V\).

(iii) For any closed set \(A\) and any open set \(V\) containing \(A\), there exists an \(\alpha\)-\(\alpha\)-open set \(U\) of \(X\) such that \(A \subseteq U \subseteq sCl(U) \subseteq V\).

PROOF. (i) \(\Rightarrow\) (ii). Follows from the fact that every open set is \(\alpha\)-\(\alpha\)-open.

(ii) \(\Rightarrow\) (iii). Let \(A\) be a closed set and \(V\) be an open set containing \(A\). Then \(A\) and \(X - V\) are disjoint closed sets. There exist disjoint \(\alpha\)-\(\alpha\)-open sets \(U\) and \(W\) such that \(A \subseteq U\) and \(X - V \subseteq W\), since \(X - V\) is closed, it is \(\alpha\)-\(\alpha\)-closed, we have \(X - V \subseteq sInt(W)\) by result 2.6 and \(U \cap sInt(W) = \emptyset\) and so we have \(sCl(U) \cap sInt(W) = \emptyset\) and hence \(A \subseteq U \subseteq sCl(U) \subseteq X - sInt(W) \subseteq V\).

(iii) \(\Rightarrow\) (i). Let \(A, B\) be disjoint closed sets of \(X\). Then \(A \subseteq X - B\) and \(X - B\) is open. There exists an \(\alpha\)-\(\alpha\)-open set \(G\) of \(X\) such that \(A \subseteq G \subseteq sCl(G) \subseteq X - B\). Since \(A\) is closed, it is \(\alpha\)-\(\alpha\)-closed, we have \(A \subseteq sInt(G)\) Put \(U = Int(Cl(\ Int(\ sInt(G)))\)) and \(V = Int(Cl(X - sCl(G)))\). Then \(U\) and \(V\) are disjoint open sets of \(X\) such that \(A \subseteq U\) and \(B \subseteq V\). Therefore \((X, \tau)\) is normal.

THEOREM 4.12.5: For a space \((X, \tau)\) the following are equivalent:

i) \((X, \tau)\) is \(\alpha\)-normal.
ii) For every pair of disjoint closed sets A and B, there exists $\alpha\hat{g}s$-open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

PROOF: (i) \Rightarrow (ii). Assume that X is α-normal. Let A and B be disjoint closed subsets of X. By hypothesis, there exist disjoint α-open sets (and hence $\alpha\hat{g}s$-open sets) U and V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

(ii) \Rightarrow (i). Let A and B be closed subsets of X. Then by assumption, $A \subseteq G$, $B \subseteq H$ and $G \cap H = \emptyset$, where G and H are disjoint $\alpha\hat{g}s$-open sets. Since A and B are $\alpha\hat{g}s$-closed sets in X, by result 4.6.2 $A \subseteq \text{sInt}(G)$, $B \subseteq \text{sInt}(H)$ and $\text{sInt}(G) \cap \text{sInt}(H) = \emptyset$. Hence (X, τ) is α-normal.

THEOREM 4.12.6: If (X, τ) is α-normal and $F \cap A = \emptyset$, where F is closed and A is $\alpha\hat{g}s$-closed, then there exist disjoint α-open sets U and V such that $F \subseteq U$ and $A \subseteq V$.

PROOF. Since F is closed and $F \cap A = \emptyset$, we have $A \subseteq F^c$ and so $\text{Cl}(A) \subseteq F^c$. Thus $\text{Cl}(A) \cap F = \emptyset$. Since F and $\text{Cl}(A)$ are closed and (X, τ) is α-normal, there exists α-open sets U and V such that $\text{Cl}(A) \subseteq U$ and $F \subseteq V$. $A \subseteq U$ and $F \subseteq V$.

THEOREM 4.12.7: If (X, τ) is α-normal, the following statements are true.

i) For each closed set A and every $\alpha\hat{g}s$-open set B such that $A \subseteq B$, there exists an α-open set U such that $A \subseteq U \subseteq \alpha\text{Cl}(U) \subseteq B$.

ii) For every $\alpha\hat{g}s$-closed set A and every open set B containing A, there exists an α-open set U such that $A \subseteq U \subseteq \alpha\text{Cl}(U) \subseteq B$.
iii. In addition that the space \((X, \tau)\) is an \(\alpha\)-space, for every pair of disjoint sets \(A\) and \(B\), one of which is closed and the other is \(\alpha\)-\(\alpha\)s-closed, there exist \(\alpha\)-open sets \(U\) and \(V\) such that \(A \subseteq U, B \subseteq V\) and \(\alpha\text{Cl}(U) \cap \alpha\text{Cl}(V) = \emptyset\).

PROOF. (i) Let \(A\) be closed and \(B\) be an \(\alpha\)\(\alpha\)s-open set such that \(A \subseteq B\). Then \(A \cap B^c = \emptyset\), where \(A\) is closed and \(B^c\) is \(\alpha\)\(\alpha\)s-closed. Therefore, by theorem 3.6, there exist \(\alpha\)-open sets \(U\) and \(V\) such that \(A \subseteq U, B^c \subseteq V\) and \(U \cap V = \emptyset\). Thus \(A \subseteq U \subseteq V^c \subseteq B\). Since \(V^c\) is \(\alpha\)-closed, \(\alpha\text{Cl}(U) \subseteq V^c\) and so \(A \subseteq U \subseteq \alpha\text{Cl}(U) \subseteq B\).

(ii) Let \(A\) be an \(\alpha\)\(\alpha\)s-closed set and \(B\) be an open set such that \(A \subseteq B\). Then \(B^c \subseteq A^c\). Since \((X, \tau)\) is \(\alpha\)-normal and \(A^c\) is \(\alpha\)\(\alpha\)s-open set containing the closed set \(B^c\), we have by (1), there exists an \(\alpha\)-open set \(G\) such that \(B^c \subseteq G\) and \(\alpha\text{Cl}(G) \subseteq A^c\). Thus \(A \subseteq (\alpha\text{Cl}(G))^c \subseteq G^c \subseteq B\). Let \(U = (\alpha\text{Cl}(G))^c\). Then \(U\) is \(\alpha\)-open and \(A \subseteq U \subseteq \alpha\text{Cl}(U) \subseteq B\).

(iii) Let \(A\) be \(\alpha\)\(\alpha\)s-closed set and \(B\) be a closed in \(X\) such that \(A \cap B = \emptyset\), then \(A \subseteq B^c\) and \(B^c\) is open. Since \((X, \tau)\) is \(\alpha\)-normal, we have by (2), there exists an \(\alpha\)-open set \(S\) such that \(A \subseteq S \subseteq \alpha\text{Cl}(S) \subseteq B^c\). Since \(A\) is \(\alpha\)\(\alpha\)s-closed and \((X, \tau)\) is an \(\alpha\)-space and so \(S\) is open, we have again by (2), there exists an \(\alpha\)-open set \(U\) such that \(A \subseteq U \subseteq \alpha\text{Cl}(U) \subseteq S \subseteq \alpha\text{Cl}(S) \subseteq B^c\). Let \(V = (\alpha\text{Cl}(S))^c\). Thus \(V\) is \(\alpha\)-open, \(B \subseteq V\) and \(\alpha\text{Cl}(U) \cap \alpha\text{Cl}(V) = \emptyset\).

THEOREM 4.12.8: The following statements are equivalent for a topological space \((X, \tau)\).

(i). \((X, \tau)\) is \(\alpha\)\(\alpha\)s-normal.
(ii) For each αgs-closed set A and for each αgs-open set U containing A,
there exists an open set V containing A such that Cl(V) ⊆ U.

(iii) For each pair of disjoint αgs-closed sets A and B in (X, τ), there
exists an open set U containing A such that Cl(U) ∩ B = ∅.

(iv) For each pair of disjoint αgs-closed sets A and B in (X, τ), there
exist an open set containing A and an open set V containing B such that
Cl(U) ∩ Cl(V)B = ∅.

PROOF. (i) → (ii). Let A be an αgs-closed set and U be an αgs-open
set such that A ⊆ U. Then A ∩ Uc = ∅. Since (X, τ) is αgs-normal,
there exist open sets V and W such that A ⊆ V, Uc ⊆ W and V ∩ W = ∅,
which implies that Cl(V) ∩ W = ∅. Now Cl(V) ∩ Uc = Cl(V) ∩ W = ∅ and
so Cl(V) ⊆ U.

(ii) → (iii). Let A and B be disjoint αgs-closed sets of (X, τ). Since A ∩
B = ∅, A ⊆ Bc and Bc is αgs-open. By assumption, there exists an
open set U containing A such that Cl(U) ⊆ Bc and so Cl(U) ∩ B = ∅.

(iii) → (iv). Let A and B be disjoint αgs-closed sets of (X, τ). Then by
assumption, there exists an open set U containing A such that Cl(U) ∩ B
= ∅. Since Cl(U) is closed, it is αgs-closed and so Cl(U) and B are
disjoint αgs-closed sets in X. Therefore again by assumption, there exists
an open set V containing B such that Cl(U) ∩ Cl(V) = ∅.

(iv) → (i). Let A and B be any two disjoint αgs-closed sets of (X, τ).
By assumption, there exist open sets U containing A and V containing B
such that Cl(A) ∩ Cl(V) = ∅, we have U ∩ V = ∅. Hence (X, τ) is αgs-
normal.
THEOREM 4.12.9: A topological space X is $\alpha\beta$-normal if and if for any disjoint $\alpha\beta$-closed sets A and B of X, there exist open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$.

PROOF. Follows from theorem 4.12.8.

THEOREM 4.12.10: If (X, τ) is $\alpha\beta$-normal space and Y is a $\alpha\beta$-closed subset of X, then the subspace Y is $\alpha\beta$-normal.

PROOF. Let A and B be any disjoint $\alpha\beta$-closed sets of Y. By [Theorem 4.5.21], A and B are $\alpha\beta$-closed in (X, τ). Since (X, τ) is $\alpha\beta$-normal, there exist disjoint open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$. Therefore $U \cap Y$ and $V \cap Y$ are disjoint open subsets of the subspace Y such that $A \subseteq U \cap Y$ and $B \subseteq V \cap Y$. This shows that the subspace Y is $\alpha\beta$-normal.

COROLLARY 4.12.11: The property of being $\alpha\beta$-normal is closed hereditary.

THEOREM 4.12.12: If $f: (X, \tau) \to (Y, \sigma)$ is a pre-$\alpha\beta$ open, pre-$\alpha\beta$-continuous, bijection and open and (X, τ) is $\alpha\beta$-normal, then (Y, σ) is $\alpha\beta$-normal.

PROOF. Let A and B be any disjoint $\alpha\beta$-closed sets of (Y, σ). Since f is pre-$\alpha\beta$ open, pre-$\alpha\beta$-continuous and bijective, f is $\alpha\beta$-irresolute [Theorem 4.9.9] and hence $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint $\alpha\beta$-closed sets of (X, τ). Since (X, τ) is $\alpha\beta$-normal, there exists disjoint open sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is open and
bijective, we obtain $A \subseteq f(U)$, $B \subseteq f(V)$, $f(U) \cap f(V) = \emptyset$ and also $f(U)$ and $f(V)$ are open in (Y, σ). This shows that (Y, σ) is $\alpha\gamma$-normal.

THEOREM 4.12.13: If $f : (X, \tau) \to (Y, \sigma)$ is $\alpha\gamma$ irresolute, pre-semi-closed, continuous injection and (Y, σ) is $\alpha\gamma$-normal, then (X, τ) is $\alpha\gamma$-normal.

PROOF. Let A and B be disjoint $\alpha\gamma$-closed sets of (X, τ). Since f is irresolute pre-semi-closed, $f(A)$ and $f(B)$ are disjoint $\alpha\gamma$-closed sets of (Y, σ) [Theorem 4.10.3]. Since (Y, σ) is $\alpha\gamma$-normal, then there exist disjoint open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Thus, we obtain $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. Since f is continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are open in (X, τ). This shows that (X, τ) is $\alpha\gamma$-normal.

THEOREM 4.12.14: If $f : (X, \tau) \to (Y, \sigma)$ is weakly continuous $\alpha\gamma$-closed injection and (Y, σ) is $\alpha\gamma$-normal, then (X, τ) is normal.

PROOF. Let A and B be any disjoint closed sets of (X, τ). Since f is $\alpha\gamma$-closed and injective, $f(A)$ and $f(B)$ are disjoint $\alpha\gamma$-closed sets of (Y, σ). Since (Y, σ) is $\alpha\gamma$-normal, by Theorem 4.12.8, there exist open sets U and V such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $\text{Cl}(U) \cap \text{Cl}(V) = \emptyset$. Since f is weakly continuous, it follows from [5, Theorem 1] that $A \subseteq f^{-1}(U) \subseteq \text{Int}[f^{-1}(\text{Cl}(U))]$, $B \subseteq f^{-1}(V) \subseteq \text{Int}[f^{-1}(\text{Cl}(V))]$ and $\text{Int}[\text{Cl}(U)] \cap \text{Int}[f^{-1}(\text{Cl}(V))] = \emptyset$. This shows that (X, τ) is normal.

4.13. ON $\alpha\gamma$-REGULAR SPACES.
In this section we introduce \(\alpha\gamma\delta\) regular spaces using \(\alpha\gamma\delta\) closed sets in topological spaces, some characterizations of \(\alpha\gamma\delta\) regular spaces are obtained.

DEFINITION 4.13.1: A topological space \((X, \tau)\) is said to be \(\alpha\gamma\delta\)-regular if for each \(\alpha\gamma\delta\)-closed set \(F\) of \(X\) and each point \(x \in F\), there exist disjoint open sets \(U\) and \(V\) of \(X\) such that \(x \in U\) and \(F \subseteq V\).

REMARK 4.13.2: It is obvious that every \(\alpha\gamma\delta\) regular space is regular. However, the converse is not true as seen from the following example.

EXAMPLE 4.13.3: Let \(X = \{a, b, c, d\}\) and \(\tau = \{\emptyset, \{a, d\}, \{b, c\}, X\}\). Then the space \((X, \tau)\) is regular, but not \(\alpha\gamma\delta\) regular.

THEOREM 4.13.4: The following are equivalent for a space \((X, \tau)\).

(i) \((X, \tau)\) is \(\alpha\gamma\delta\)-regular.

(ii) \(\text{Cl}_\emptyset(A) = \alpha\gamma\delta\text{Cl}(A)\) for each subset \(A\) of \((X, \tau)\).

(iii) \(\text{Cl}_\emptyset(A) = A\) for each \(\alpha\gamma\delta\)-closed set \(A\).

PROOF. (i) \(\rightarrow\) (ii). Assume that \((X, \tau)\) is \(\alpha\gamma\delta\)-regular. For any subset \(A\) of \((X, \tau)\), we always have \(A \subseteq \alpha\gamma\delta\text{Cl}(A) \subseteq \text{Cl}_\emptyset(A)\). Suppose that \(x \in (\alpha\gamma\delta\text{Cl}(A))^c\). Then there exists an \(\alpha\gamma\delta\)-closed set \(F\) such that \(x \in X - F\) and \(A \subseteq F\). Since \((X, \tau)\) is \(\alpha\gamma\delta\)-regular, there exist disjoint open sets \(U\) and \(V\) such that \(x \in U\) and \(F \subseteq V\). Therefore, we have \(x \in \text{Cl}(U) \subseteq X - V \subseteq X - F \subseteq X - A\) and hence \(\text{Cl}(U) \cap A = \emptyset\). Therefore, we have \(X - \text{Cl}_\emptyset(A)\) and hence \(\text{Cl}_\emptyset(A) = \alpha\gamma\delta\text{Cl}(A)\).

(ii) \(\rightarrow\) (iii). The proof is trivial.

(iii) \(\rightarrow\) (i). Let \(F\) be any \(\alpha\gamma\delta\)-closed set and \(x \notin F\). Since \(F\) is \(\alpha\gamma\delta\)-closed, by assumption \(x \in X - \text{Cl}_\emptyset(F)\) and there exists an open set \(U\) such that
\[x \in U \text{ and } \text{Cl}(U) \cap F = \emptyset. \text{ Therefore we obtain that } F \subseteq X - \text{Cl}(U) \text{ ie. } F \subseteq V \text{ where } V = X - \text{Cl}(U) \text{ and also } U \text{ and } V \text{ are disjoint. This shows that } (X, \tau) \text{ is } \alpha\gamma\delta\text{-regular.} \]

THEOREM 4.13.5: Let \((X, \tau)\) be a topological space. Then the following are equivalent:

(i) \((X, \tau)\) is an \(\alpha\gamma\delta\text{-regular space.}\)

(ii) For each \(x \in X\) and each \(\alpha\gamma\delta\)-open neighbourhood \(A\) of \(x\) there exists an open neighbourhood \(V\) of \(x\) such that \(\text{Cl}(V) \subseteq A\).

PROOF. (i) \(\rightarrow\) (ii). Let \(A\) be any \(\alpha\gamma\delta\)-open neighbourhood \(A\) of \(x\). Then there exists an \(\alpha\gamma\delta\)-open set \(G\) such that \(x \in G \subseteq A\). Since \(X - G\) is \(\alpha\gamma\delta\) closed and \(x \in X - G\), by hypothesis, there exist open sets \(U\) and \(V\) such that \(X - G \subseteq U\), \(x \in V\) and \(U \cap V = \emptyset\) and so \(V \subseteq X - U\). Now \(\text{Cl}(V) \subseteq \text{Cl}(X - U) = X - U\) and \(X - G \subseteq U\) implies \(X - U \subseteq G \subseteq A\). Therefore \(\text{Cl}(V) \subseteq A\).

(iii) \(\rightarrow\) (i). Let \(F\) be any \(\alpha\gamma\delta\)-closed set of \(X\) and \(x \notin F\). Then \(x \in X - F\) and \(X - F\) is \(\alpha\gamma\delta\)-open and so \(X - F\) is an \(\alpha\gamma\delta\) neighbourhood of \(x\). By hypothesis, there exists an open neighbourhood \(V\) of \(x\) such that \(x \in V\) and \(\text{Cl}(V) \subseteq X - F\), which implies \(F \subseteq X - \text{Cl}(V)\). Then \(X - \text{Cl}(V)\) is an open set containing \(F\) and \(V \cap (X - \text{Cl}(V)) = \emptyset\). Therefore \((X, \tau)\) is \(\alpha\gamma\delta\text{-regular.}\)

We recall the following definition.

THEOREM 4.13.7: A space \((X, \tau)\) is semi-symmetric if and only if \(\{x\}\) is \(\alpha\gamma\delta\)-closed for each \(x\) in \(X\).
PROOF. Sufficiency. Suppose \(x \in \text{sCl}(y) \), but \(y \notin \text{sCl}(x) \). Then \(\{y\} \subseteq X - \text{sCl}(x) \) and thus \(\text{sCl}(y) \subseteq X - \text{sCl}(x) \). Then \(x \in X - \text{sCl}(x) \), a contradiction.

Necessity. Suppose \(\{x\} \subseteq U \in \alpha\text{gsO}(X, \tau) \), but \(\text{sCl}(x) \subseteq U \). Then \(\text{sCl}(x) \cap U^c \neq \emptyset \). Take \(y \in \text{sCl}(x) \cap U^c \). Therefore, \(x \in \text{sCl}(y) \subseteq U^c \) and \(x \notin U \), a contradiction. Hence \(\{x\} \) is \(\alpha\text{gs} \)-closed in \((X, \tau)\).

THEOREM 4.13.8: Every \(\alpha \)-normal, semi-symmetric space \((X, \tau)\) is \(\alpha \)-regular.

PROOF. Let \(F \) be a closed subset of \((X, \tau)\) and \(x \in X \) such that \(x \notin F \). Since \((X, \tau)\) is semi-symmetric space, by theorem 4.13.7, \(\{x\} \) is \(\alpha\text{gs} \)-closed. Since \(F \) is closed and \((X, \tau)\) is \(\alpha \)-normal, we have by theorem 4.12.6, there exists disjoint \(\alpha \)-open sets \(U \) and \(V \) such that \(F \subseteq U \) and \(\{x\} \subseteq V \). Therefore \((X, \tau)\) is \(\alpha \)-regular.

THEOREM 4.13.9: A topological space \((X, \tau)\) is \(\alpha\text{gs} \)-regular if and only if for each \(\alpha\text{gs} \) closed set \(F \) of \(X \) and each point \(x \in F \), there exist open sets \(U \) and \(V \) of \(X \) such that \(x \in U \), \(F \subseteq V \) and \(\text{Cl}(U) \cap \text{Cl}(V) = \emptyset \).

PROOF. Necessity. Let \(F \) be an \(\alpha\text{gs} \)-closed set of \(X \) and \(x \in F \). There exist open sets \(U_0 \) and \(V \) of \(X \) such that \(x \in U_0 \), \(F \subseteq V \) and \(U_0 \cap V = \emptyset \); hence \(U_0 \cap \text{Cl}(V) = \emptyset \). Since \((X, \tau)\) is \(\alpha\text{gs} \) regular, there exist open sets \(G \) and \(H \) of \(X \) such that \(x \in G \), \(\text{Cl}(V) \subseteq H \) and \(G \cap H = \emptyset \); hence \(\text{Cl}(G) \cap H = \emptyset \). Now put \(U = U_0 \cap G \), then \(U \) and \(V \) are open sets of \(X \) such that \(x \in U \), \(F \subseteq V \) and \(\text{Cl}(U) \cap \text{Cl}(V) = \emptyset \).

Sufficient: Sufficiency is obvious.

COROLLARY 4.13.10: If a space \((X, \tau)\) is \(\alpha\text{gs} \) regular and semi-symmetric, then it is Uryshon.
PROOF: Similar to Corollary 4.11. Let \(x \) and \(y \) be any district point of \(X \).

Since \(X \) is semi- symmetric, \(\{x\} \) is \(\alpha\gs \)-closed by theorem 4.13.9 where exists open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \) and \(\text{Cl}(U) \cap \text{Cl}(V) = \emptyset \).

THEOREM 4.13.11: If \((X, \tau)\) is an \(\alpha\gs \)-regular space and \(Y \) is an open set and \(\alpha\gs \)-closed subset of \((X, \tau)\), then the subspace \(Y \) is \(\alpha\gs \)-regular.

PROOF: Let \(A \) be any \(\alpha\gs \)-closed subset of \(Y \) and \(y \not\in A \). By [Theorem 4.5.21], \(A \) is \(\alpha\gs \)-closed in \((X, \tau)\). Since \((X, \tau)\) is \(\alpha\gs \)-regular, there exists disjoint open sets \(U \) and \(V \) of \(X \) such that \(y \in U \) and \(A \subseteq V \). Therefore \(U \cap Y \) and \(V \cap Y \) are disjoint open sets of the subspace \(Y \) such that \(y \in U \cap Y \) and \(A \subseteq V \cap Y \). This shows that the subspace \(Y \) is \(\alpha\gs \)-regular.

THEOREM 4.13.12: If \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha\gs \)-irresolute, pre-semi-closed, continuous injection and \((Y, \sigma)\) is \(\alpha\gs \)-regular, then \((X, \tau)\) is \(\alpha\gs \)-regular.

PROOF: Let \(F \) be any \(\alpha\gs \)-closed set of \(X \) and \(x \in X - F \). Since \(f \) is irresolute pre-\(\alpha \)-closed, \(f(F) \) is \(\alpha\gs \)-closed in \(Y \) [Theorem 4.10.3]. And \(f(x) \in Y - f(F) \). Since \((Y, \sigma)\) is \(\alpha\gs \)-regular, there exist disjoint open sets \(U \) and \(V \) such that \(f(x) \in U \) and \(f(F) \subseteq V \). Thus, we obtain \(x \in f^{-1}(U) \), \(F \subseteq f^{-1}(V) \) and \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \). This shows that \((X, \tau)\) is \(\alpha\gs \)-regular.

THEOREM 4.13.13: If \(f : (X, \tau) \to (Y, \sigma) \) is weakly continuous \(\alpha\gs \)-closed injection and \((Y, \sigma)\) is \(\alpha\gs \)-regular, then \((X, \tau)\) is regular.
PROOF. Let A be any αgs-closed set of X and x ∈ A. Since f is αgs-closed, f(A) is αgs-closed in Y and f(x) ∈ Y - f(A). Since Y is αgs-regular, by theorem 4.13.9, there exist disjoint open sets U and V such that f(x) ∈ U, f(A) ⊆ V and Cl(U) ∩ Cl(V) = ∅. Since f is weakly continuous, it follows from [58 theorem 1] that x ∈ f⁻¹(U) ⊆ Int[f⁻¹(Cl(U))], A ⊆ f⁻¹(V) ⊆ Int[f⁻¹(Cl(V))] and Int[f⁻¹(Cl(U))] ∩ Int[f⁻¹(Cl(V))] = ∅. Therefore (X, τ) is regular.

4.14. On αgα-closed sets in topological spaces

DEFINITION 4.14.1: A subset A of X is called α-generalized αgs-closed set (briefly αgα-closed set) if αCl(A) ⊆ U whenever A ⊆ U and U is αgs-open set in X.

THEOREM 4.14.2: If A and B are αgα-closed sets, then A ∪ B is αgα-closed set in X.

PROOF: If A ∪ B ⊆ G and G is αgs-open, then A ⊆ G and B ⊆ G. Since A and B are αgα-closed sets, αCl(A) ⊆ G and αCl(B) ⊆ G and hence αCl(A) ∪ αCl(B) ⊆ G, since αCl(A ∪ B) = αCl(A) ∪ αCl(B). We have αCl(A ∪ B) = αCl(A) ∪ αCl(B) ⊆ G, thus A ∪ B is a αgα-closed set in X.

THEOREM 4.14.3: Every closed set is αgα-closed set in X.

PROOF: Let A be a closed set in X. Note that αCl(A) ⊆ αCl(A) always and Cl(A) = A, if A is closed set. So if A ⊆ G where G is αgs-open set in X, then αCl(A) ⊆ G. Hence A is αgα-closed set in X.

Converse is not true.
EXAMPLE 4.14.4: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ Then the sets $\{c\}, \{b\}$ are $\alpha \alpha$-closed sets in X but not closed in X.

THEOREM 4.14.5: Every $\alpha \hat{\alpha}$-closed set is $\alpha \hat{\alpha} \hat{s}$-closed set in X.

PROOF: Let A be any $\alpha \hat{\alpha}$-closed set in X and G be any $\alpha \hat{s} \hat{g}$-open set containing A. Then $\alpha \text{Cl}(A) \subseteq G$. Hence $\hat{s}\text{Cl}(A) \subseteq G$. Thus A is $\alpha \hat{\alpha} \hat{s}$-closed set in X.

Converse is not true.

EXAMPLE 4.14.6: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ Then the sets $\{a\}$ and $\{b\}$ are $\alpha \hat{\alpha} \hat{s}$-closed set but not $\alpha \hat{\alpha} \alpha$-closed sets in X.

THEOREM 4.14.7: Every $\alpha \hat{\alpha}$-closed set is $\alpha \hat{g}$-closed set in X.

PROOF: Let A be an $\alpha \hat{\alpha}$-closed set in X. Let $A \subseteq U$, where U is open in X. Every open set in X is $\alpha \hat{g} \hat{s}$-open in X. Therefore U is $\alpha \hat{g} \hat{s}$-open in X. Hence $\alpha \text{Cl}(A) \subseteq U$. So A is $\alpha \hat{g}$-closed set in X.

Converse is not true.

EXAMPLE 4.14.8: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ Then the sets $\{a, b\}, \{b, c\}$ are $\alpha \hat{g}$-closed sets but not $\alpha \hat{\alpha} \alpha$-closed sets in X.

THEOREM 4.14.9: Every α-closed set is $\alpha \hat{\alpha}$-closed set in X.

PROOF: Trivial.

Converse is not true.
EXAMPLE 4.14.10: Let \(X = \{a, b, c, d\} \) and \(\tau = \{ \emptyset, X, \{a\}, \{b\}, \{a, b\}\} \)
Then the sets \(\{a, d\} \) and \(\{b, d\} \), \(\{a, b, d\} \) are \(\alpha \tilde{g} \alpha \)-closed set but not \(\alpha \)-closed sets in \(X \).

THEOREM 4.14.11: Every \(\alpha \tilde{g} \alpha \)-closed set is \(\alpha \)-*g- closed set in \(X \).

PROOF: Let \(A \) be an \(\alpha \tilde{g} \alpha \)-closed set in \(X \). Let \(A \subseteq U \) and \(U \) be \(\omega (= \tilde{g} \) open set in \(X \). Every \(\omega \)-open set in \(X \) is \(\alpha g s \) - open in \(X \). Hence \(\alpha Cl(A) \subseteq U \). So \(A \) is \(\alpha \)-*g- closed set in \(X \).

Converse is not true.

EXAMPLE 4.14.12: Let \(X = \{a, b, c\} \) and \(\tau = \{ \emptyset, \{a\}, X \} \). Then the sets \(\{a, b\} \) and \(\{a, c\} \) are \(* g \)-closed sets but not \(\alpha \tilde{g} \alpha \)-closed sets in \(X \).

THEOREM 4.14.13: Every \(\alpha \tilde{g} \alpha \)-closed set is \(g \alpha \)-closed set in \(X \).

PROOF: Let \(A \) be an \(\alpha \tilde{g} \alpha \)-closed set in \(X \). Let \(A \subseteq U \) and \(U \) be an \(\alpha \)-open set in \(X \), Since every \(\alpha \)-open set in \(X \) is \(\alpha g s \)-open in \(X \) \(\), \(U \) is \(\alpha g s \)-open in \(X \). Hence \(\alpha Cl(A) \subseteq U \). So \(A \) is \(g \alpha \)-closed set in \(X \).

Converse is not true.

EXAMPLE 4.14.14: Let \(X = \{a, b, c, d\} \) and \(\tau = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, X \} \)
Then \(\{c\} \) is \(g \alpha \)- closed but not \(\alpha \tilde{g} \alpha \)-closed sets in \(X \).

THEOREM 4.14.16: If \(A \) is an on \(\alpha \tilde{g} \alpha \)-closed set in \(X \), then \(\alpha Cl (A) – A \) contains no non - empty closed set in \(X \).
PROOF: Suppose that A is an $\alpha g\alpha$-closed set in X. Let F be a closed subset of $\alpha Cl(A) - A$, then $A \subseteq F^c$. Since A is an $\alpha g\alpha$-closed set, $\alpha Cl(A) \subseteq F^c$. Therefore we have $F \subseteq \alpha Cl(A)$. Thus $F \subseteq \alpha Cl(A) \cap (\alpha Cl(A))^c = \emptyset$ and F is empty.

Converse of the above Theorem is not true as seen from the following example.

EXAMPLE 4.14: Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$ and let $A = \{a, b\}$ and $B = \{a, c\}$. Then $\alpha cl(A) - (A)$, and $\alpha cl(B)$ - B contains no non empty closed set in X but A and B are not $\alpha g\alpha$-closed set in X.

THEOREM 4.14.17: A subset A is an $\alpha g\alpha$-closed set if and if $\alpha Cl(A) - A$ contains no non empty $\alpha g\alpha$s-closed set in X.

PROOF: Suppose A is an $\alpha g\alpha$-closed set. Let S be an $\alpha g\alpha$s-open subset of $\alpha Cl(A) - A$. Then $A \subseteq S^c$. Since A is an $\alpha g\alpha$-closed set, we have $\alpha Cl(A) \subseteq S^c$. Consequently $S \subseteq (\alpha Cl(A))^c$, hence $\alpha Cl(A) \cap (\alpha Cl(A))^c = \emptyset$. Therefore, S is empty.

Conversely, suppose that $\alpha Cl(A) - A$. contains no non-empty $\alpha g\alpha$s-closed set. Let $A \subseteq G$ and let G be $\alpha g\alpha$s-open. If $\alpha Cl(A) \not\subseteq G$, then $\alpha Cl(A) \cap G^c$ is non empty $\alpha g\alpha$s-closed subset of $\alpha Cl(A) - A$. Therefore A is an on $\alpha g\alpha$-closed set in X.

THEOREM 4.14.18: If A is an $\alpha g\alpha$-closed set and $A \subseteq B \subseteq \alpha Cl(A)$, then B is an $\alpha g\alpha$-closed set in X.
PROOF: Let \(B \subseteq U \) where \(U \) is \(\alpha \text{gs-open in } X \). Since \(A \) is an \(\alpha \tilde\alpha \)-closed set and \(A \subseteq U \), it follows that \(\alpha \text{Cl}(A) \subseteq U \). By hypothesis \(B \subseteq \alpha \text{Cl}(A) \) and hence \(\alpha \text{Cl}(B) \subseteq \alpha \text{Cl}(A) \). Consequently, \(\alpha \text{Cl}(B) \subseteq U \) and so, \(B \) becomes an \(\alpha \tilde\alpha \)-closed in \(X \).