CHAPTER 6
FIXED POINTS AND NORMALITY CRITERIA
In this chapter, we prove some sufficient conditions for a family of meromorphic functions to be normal in a domain.

6.1 INTRODUCTION

Let C be the open complex plane and $D \subset C$ be a domain.

It is an interesting problem to find out criteria for normality of a family of analytic or meromorphic functions. In recent years this problem attracted the attention of a number of researchers worldwide.

In 1969 D. Drasin [10] proved the following normality criterion

Theorem 6.1.A: Let F be a family of analytic functions in a domain D and $a(\neq 0), b$ be two finite numbers. If for every $f \in F$, $f' - af^n - b$ has no zero then F is normal, where $n (\geq 3)$ is an integer.

Chen-Fang [8] and Ye [45] independently proved that Theorem 6.1.A also holds for $n = 2$. A number of authors { [6],[27],[28],[29],[33],[50]} extended Theorem 6.1.A to a family of meromorphic functions in a domain. Their results can be combined in the following theorem.

Theorem 6.1.B: Let F be a family of meromorphic functions in a domain D and $a(\neq 0), b$ be two finite numbers. If for every $f \in F$, $f' - af^n - b$ has no zero then F is normal, where $n (\geq 3)$ is an integer.

Li [28], Li [29] and Langley [27] proved Theorem 6.1.B for $n \geq 5$, Pang [33] proved for $n = 4$ and Chen-Fang [6], Zalcman [50] proved for $n = 3$. Fang-
Yuan [14] showed that Theorem 6.1.B does not, in general, hold for \(n = 2 \).

For the case \(n = 2 \) they proved the following result.

Theorem 6.1.C: Let \(F \) be a family of meromorphic functions in a domain \(D \) and \(a(\neq 0), b \) be two finite numbers. If \(f' - af^2 - b \) has no zero and \(f \) has no simple and double pole for every \(f \in F \), then \(F \) is normal.

Fang-Yuan [14] mentioned the following example from which it appears that the condition for each \(f \in F \) not to have any simple and double pole is necessary for Theorem 6.1.C.

Example 6.1.1: Let \(f_n(z) = nz(z^n - 1)^2 \) for \(n = 1, 2, \ldots \) and \(D : |z| < 1 \). Then each \(f_n \) has only a double pole and a simple zero. Also \(f_n' + f_n^2 = n(z^{n-1})^2 \neq 0 \).

Since \(f_n^*(0) = n \to \infty \) as \(n \to \infty \), it follows from Marty's criterion that \(\{f_n\} \) is not normal in \(D \).

Indrajit Lahiri and Shyamali Dewan [25] mentioned the following example from which it suggests that the restriction on the poles of \(f \in F \) may be relaxed at the cost of some restriction imposed on the zeros of \(f \in F \).

Example 6.1.2: Let \(f_n(z) = nz^{-2} \) for \(n = 3, 4, \ldots \) and \(D : |z| < 1 \). Then each \(f_n \) has only a double pole and no simple zero. Also we see that \(f_n' + f_n^2 = n(n-2z)z^{-4} \neq 0 \) in \(D \).

Since

\[
 f_n^*(z) = \frac{2n|z|}{|z|^2 + n^2} \leq \frac{2}{n} < 1
\]

in \(D \), it follows from Marty's criterion that the family \(\{f_n\} \) is normal in \(D \).

Indrajit Lahiri and Shyamali Dewan [25] have given some sufficient conditions for a family of meromorphic functions to be normal in a domain by proving following theorem and also have given example to show that given conditions are necessary.
Theorem 6.1.D: Let F be a family of meromorphic functions in a domain D such that no $f \in F$ has any simple zero and simple pole. Let

$$E_f = \{z : z \in D \text{ and } f'(z) - af^2(z) = b\},$$

where $a(\neq 0), b$ be two finite numbers.

If there exists a positive number M such that for every $f \in F$, $|f(z)| \leq M$ whenever $z \in E_f$, then F is normal.

Now we extend theorem 6.1.D by replacing constant a by variable z in the following form.

Theorem 6.1.1: Let F be a family of transcendental (rational) meromorphic functions in a domain D such that if all zeros and poles of $f \in F$ are multiple, except possibly finitely many (if $f \in F$ have no simple zeros and no simple pole). Let $E_f = \{z : z \in D \text{ and } f' + zf^2 = a\}$ where a is a finite number. If there exists a positive number M such that for every $f \in F$, $|f(z)| \leq M$ whenever $z \in E_f$, then F is normal.

The following examples show that the condition of Theorem 6.1.1 on the zeros and poles are necessary.

Example 6.1.3: Let $f_n(z) = n \tan n z^2$ for $n = 1, 2, \ldots$ and $D: |z| < \pi$. Then f_n has only simple zeros and simple poles. Here $E_f = \{0\}$ and $|f_n(0)| = 0$. Since $f_n(0) = 0$ and for $z \neq 0$ $f_n(z) \to \infty$ as $n \to \infty$, it follows that the family $\{f_n\}$ is not normal.

Example 6.1.4: $f_n(z) = \frac{1}{nz}$ for $n = 2, 3, \ldots$ and $D: |z| < 1$. Then f_n has simple pole and no simple zeros. Here $f_n' + zf_n^2 \neq 0$ and since $f_n^4(0) = n \to \infty$ as $n \to \infty$, by Marty criterion the family $\{f_n\}$ is not normal.
Example 6.1.5: \(f_n(z) = -nz \) for \(n = 2, 3, \ldots \) and \(D: |z| < 1 \). Then \(f_n \) has only simple zero and no simple poles. Here \(E_f = \left\{ \frac{1}{n^{1/2}} \right\} \) for \(n = 2, 3, \ldots \) and \(D: |z| < 1 \).

Also we see that for \(z \in E_f \), \(\left| f_n'(z) \right| = \frac{1}{n^{3/2}} \to 0 \) as \(n \to \infty \) and \(f_n''(0) = n \to \infty \) as \(n \to \infty \), by Marty criterion the family \(\{f_n\} \) is not normal.

Drasin also proved the following normality criterion which involves differential polynomials.

Theorem 6.1.E: Let \(F \) be a family of analytic functions in a domain \(D \) and \(a_0, a_1, \ldots, a_{k-1} \) be finite constants, where \(k \) is a positive integer. Let

\[
H(f) = f^{(k)} + a_{k-1}f^{(k-1)} + \ldots + a_1f + a_0f
\]

If for every \(f \in F \)

(i) \(f \) has no zero

(ii) \(H(f) - 1 \) has no zero of multiplicity less than \(k + 2 \),

then \(F \) is normal.

Recently Fang-Yuan [14] proved that Theorem 6.1.E remains valid even if \(H(f) - 1 \) has only multiple zeros for every \(f \in F \). In the next theorem Indrajit Lahiri and Shyamali Dewan [25] extended Theorem 6.1.E to a family of meromorphic functions which also improves a result of Fang-Yuan [14] and also we give some examples to show that given conditions are necessary.

Theorem 6.1.F: Let \(F \) be a family of meromorphic functions in a domain \(D \) and

\[
H(f) = f^{(k)} + a_{k-1}f^{(k-1)} + \ldots + a_1f + a_0f
\]

where \(a_0, a_1, \ldots, a_{k-1} \) are finite constants and \(k \) is a positive integer. Let

\[E_f = \{ z: z \in D \text{ and } z \text{ is a simple zero of } H(f) - 1 \} \, . \]
If for every $f \in F$

(i) f has no zero

(ii) f has no pole of multiplicity less than $k + 3$

(iii) there exists a positive constant M such that $|f(z)| \geq M$ whenever $z \in E_f$, then F is normal.

In the second theorem of this chapter, we extend Theorem 6.1.F for fixed points.

Theorem 6.1.2: Let F be a family of meromorphic functions in a domain D and

$$H(f) = f^{(k)} + a_{k-1}f^{(k-1)} + \ldots + a_1f^{(1)} + a_0f$$

where $a_0, a_1, \ldots, a_{k-1}$ are finite constants and k is a positive integer.

Let $E_f = \{ z : z \in D \text{ and } z \text{ is a simple zero of } H(f) - z \}$

If for every $f \in F$

(i) f has no pole of multiplicity less than $k + 2$

(ii) f has no zero

(iii) there exists a positive constant M such that $|f(z)| \geq M$ whenever $z \in E_f$,

then F is normal.

The following examples show that conditions of Theorem 6.1.2 are necessary.

Example 6.1.6: $f_n(z) = nz^2$ for $n = 1, 2, \ldots$ in $D : |z| < 1$. Here $H(f) = f' - f'$ and $M = 1/3$. Then f_n has a zero at $z = 0$ and $E_{f_n} = \left\{ \frac{2n}{2n+1} \right\}$ for $n = 1, 2, \ldots$.
so
\[\left| f_n \left(\frac{2n}{2n+1} \right) \right| \geq M \text{ for } n = 1, 2, \ldots \]

Since \(f_n(0) = 0 \) and for \(z \neq 0 \) \(f_n(z) \to \infty \) as \(n \to \infty \), it follows that the family \(\{f_n\} \) is not normal.

Example 6.1.7: \(f_n(z) = \frac{1}{nz} \) for \(n = 1, 2, \ldots \) in \(D : |z| < 1 \). \(H(f) = f^* \), then
\[E_n = \{2/n\}^4 \text{ for } n = 3, 4, \ldots \]

For \(z \in E_n \), \(f_n(z) \to 0 \) as \(n \to \infty \) and since \(f_n^*(0) = n \to \infty \) as \(n \to \infty \), by Marty criterion the family \(\{f_n\} \) is not normal.

In connection with Theorem 6.1.A Chen-Fang [6] proposed the following conjecture

Conjecture 6.1.1: Let \(F \) be a family of meromorphic functions in a domain \(D \). If for every function \(f \in F \), \(f^{(k)} - af - b \) has no zero in \(D \) then \(F \) is normal, where \(a(\neq 0), b \) are two finite numbers and \(k, n \geq (k + 2) \) are positive integers.

In response to this conjecture Xu [41] proved the following result.

Theorem 6.1.G: Let \(F \) be a family of meromorphic functions in a domain \(D \) and \(a(\neq 0), b \) be two finite constants. If \(k \) and \(n \) are positive integers such that \(n \geq k + 2 \) and for every \(f \in F \)

(i) \(f^{(k)} - af - b \) has no zero

(ii) \(f \) has no simple zero,

then \(F \) is normal.

The condition (ii) of Theorem 6.1.G can be dropped if we choose \(n \geq k + 4 \) ([33],[38]). Also some improvement of Theorem 6.1.G can be found in [46].
In the next theorem Indrajit Lahiri and Shyamali Dewan [25] investigated the situation when the power of f is negative in condition (i) of Theorem 6.1.F and given some examples to show that given conditions are necessary.

Theorem 6.1.H: Let F be a family of meromorphic functions in a domain D and $a(\neq 0), b$ be two finite numbers. Suppose that

$$E_f = \{z : z \in D \text{ and } f^{(k)}(z) + af^{-n}(z) = b\},$$

where $k, n(>k)$ are positive integers. If for every $f \in F$

(i) f has no zero of multiplicity less than k

(ii) there exists a positive number M such that for every $f \in F$, $|f(z)| \geq M$ whenever $z \in E_f$, then F is normal.

In the next theorem of this chapter, we replace constant 'a' by z in the Theorem 6.1.H and obtain following theorem

Theorem 6.1.3: Let F be a family of meromorphic functions in a domain D and a be finite number. Suppose that

$$E_f = \{z : z \in D \text{ and } f^{(k)}(z) - zf^{-n}(z) = a\}$$

where $k, n(\geq k)$ are positive integers.

If for every $f \in F$

(i) f has no zero of multiplicity less than k

(ii) there exists a positive number M such that for every $f \in F$, $|f(z)| \geq M$ whenever $z \in E_f$, then F is normal.

Following examples show that the conditions of theorem 3 are necessary
Example 6.1.8 : Let $f_p(z) = \frac{p}{z}$ for $p = 1, 2, 3, \ldots$ and $D : |z| < 1$, $n = 2$, $k = 1$, $a = 0$. Here $f_p(z)$ has only simple zero at the origin and $E_{f_p} = \{1\}$ so that $|f_p(z)| \to \infty$ as $p \to \infty$ whenever $z \in E_f$. Since $f_p^*(0) = p^2 \to \infty$ as $p \to \infty$, by Marty criterion the family $\{f_p\}$ is not normal.

Example 6.1.9 : Let $f_p(z) = p z^2$ for $p = 1, 2, 3, \ldots$ and $D : |z| < 1$, $n = 1$, $k = 1$, $a = 0$. Then $f_p(z)$ has only double zero at the origin and $E_{f_p} = \left\{ \pm \frac{1}{\sqrt{2}} p \right\}$ so that $|f_p(z)| \to 0$ as $p \to \infty$ whenever $z \in E_f$. Since $f_p(0) = 0$ and $z \neq 0$, $f_p(z) \to \infty$ as $p \to \infty$ it follows that the family $\{f_p\}$ is not normal.

6.2 LEMMAS

For the proof of the above theorems, we require the following lemmas:

Lemma 6.2.1 [7],[40] : Let F be a family of meromorphic functions in a domain D and let the zeros of f be of multiplicity not less than k (a positive integer) for each $f \in F$. If F is not normal at $z_0 \in D$ then for $0 \leq \alpha < k$ there exist a sequence of complex numbers $z_j \to z_0$, a sequence of functions $f_j \in F$ and a sequence of positive numbers $\rho_j \to 0$ such that

$$g_j(\xi) = \rho_j^{-\alpha} f_j(z_j + \rho_j \xi)$$

converges spherically and locally uniformly to a nonconstant meromorphic function $g(\xi)$ in C. Moreover the order of g is not greater than two and the zeros of g are of multiplicity not less than k.

Note 1: If each $f \in F$ has no zero then g also has no zero and in this case we can choose α to be any finite real numbers.
W. Bergweiler and X. Pang [2] proved the following theorem:

Lemma 6.2.2: Let f be a transcendental meromorphic function of finite order and let P be a polynomial, $P \not= 0$. Suppose that all zeros of f are multiple, except possibly finitely many. Then $f' - P$ has infinitely many zeros.

Lemma 6.2.3: Let f be a non-constant rational function in C. Then $f' - z$ must have some zeros.

Proof: Let $f = p/q$, where p, q are polynomials of degree m, n respectively and p, q have no common factor.

We now consider the following cases.

Let $\psi = f' - z = \frac{p'q - pq'}{q^2} - z = \frac{p'q - pq' - zq^2}{q^2} = \frac{p_1}{q_1}$, say,

where p_i and q_i are polynomials of degree m_i and n_i.

Case 1: Let $m < n$

Clearly $m_i > n_i$. Therefore ψ is non-constant. If ψ has no zero then p_i and q_i share 0 CM (counting multiplicities) and so $p_i = A q_i$, where A is a constant. Therefore $\psi = A$, which is impossible. So $\psi = f' - z$ must have some zeros.

Case 2: Let $m = n$

Clearly $m_i > n_i$ and so ψ is non-constant. Therefore as Case 1, $\psi = f' - z$ must have some zeros.

Case 3: Let $m > n$

Subcase (i) Let $m = n + 1$
Clearly $m > n$, and so ψ is non-constant. Therefore as Case 1, $\psi = f' - z$ must have some zeros.

Subcase (ii) Let $m \geq n + 2$

Clearly $m > n$, and so ψ is non-constant. Therefore as Case 1, $\psi = f' - z$ must have some zeros. This proves the lemma 6.2.3

W. Bergweiler [3] proved the following theorem

Lemma 6.2.4: Let f be a transcendental meromorphic function of finite order and R is a polynomial which does not vanish identically, then $f^2 f' - R$ has infinitely many zeros for every $n \in N$.

Lemma 6.2.5: Let f be a non-constant rational function in C. Then $f^2 f' - z$ must have some zeros.

Proof: Let $g = f^{n+1}/(n+1)$. Then g is a non-constant rational function in C. So by Lemma 6.2.3, $g' - z = f^2 f' - z$ must have some zeros. This proves the lemma 6.2.5.

Lemma 6.2.6: Let f be a non-constant meromorphic function in C such that f has no zero of multiplicity $< k$. Suppose that $\Psi = \frac{f^n f^{(k)}}{z}$, where k, n are positive integers. If $n \geq k \geq 2$, then $f^* f^{(k)}$ has infinitely many fix points.

Proof: Since f has no zero of multiplicity $< k$, we get

$$\Psi = \frac{f^n f^{(k)}}{z} \neq \text{constant.}$$

By second fundamental theorem, we have
\[
T(r, \Psi) \leq N(r, \Psi) + N\left(r, \frac{1}{\Psi}\right) + N\left(r, \frac{1}{\Psi^2}\right) + S(r, \Psi)
\]
\[
= N\left(r, \frac{f^n f^{(k)}}{z}\right) + N\left(r, \frac{1}{f^n f^{(k)} / z}\right) + N\left(r, \frac{1}{\Psi^2}\right) + S(r, \Psi)
\]
\[
\leq \frac{1}{n + k + 1} N\left(r, \frac{f^n f^{(k)}}{z}\right) + \frac{1}{nk} N\left(r, \frac{1}{f^n f^{(k)} / z}\right) + \frac{1}{\Psi^2} + S(r, \Psi)
\]
\[
\leq \frac{nk + n + k + 1}{nk (n + k + 1)} T(r, \Psi) + N\left(r, \frac{1}{\Psi^2}\right) + S(r, \Psi)
\]
\[
\left(1 - \frac{nk + n + k + 1}{nk (n + k + 1)}\right) T(r, \Psi) \leq N\left(r, \frac{1}{\Psi^2}\right) + S(r, \Psi)
\]

Since \(n \geq k \geq 2 \), we get \(\Psi^{-1} \) has infinitely many zeros i.e \(f^n f^{(k)} \) has infinitely many fix points.

Lemma 6.2.7: Let \(f \) be a non constant meromorphic function in \(C \) such that \(f^i \neq 0 \). Then \(f^{(k)} - z f^n \) must have some zeros, where \(k \) and \(n (\geq k) \) are positive integers.

Proof: First we assume that \(k = 1 \). Then by Lemmas 6.2.4 and 6.2.5, we see that \(f^n f' - z \) must have some zeros. Since a zero of \(f^n f' - z \) is not a pole or a zero of \(f \), it follows that a zero of \(f^n f' - z \) is a zero of \(f' - z f^n \).

Now we assume that \(k \geq 2 \). Then by Lemma 6.2.6, \(f^n f^{(k)} - z \) must have some zeros. Since a zero of \(f^n f^{(k)} - z \) is a zero of \(f^{(k)} - z f^n \), The lemma 6.2.7 is proved.

Lemma 6.2.8: Let \(f \) be a non constant meromorphic function in \(C \) such that \(f \) has no zeros and also \(f \) has no pole of multiplicity less than \(k + 2 \). Then \(f^{(k)} - z \) must have some simple zero, where \(k \) is a positive integer.

Proof: Since \(f \) has no pole of multiplicity less than \(k + 2 \), we get
\[\Psi = \frac{f^{(k)}}{z} \neq \text{constant.} \]

Then by second fundamental theorem

\[
T(r,\Psi) \leq N(r,\Psi) + N\left(r, \frac{1}{\Psi}\right) + N\left(r, \frac{1}{\Psi - 1}\right) + S(r,\Psi)
\]

\[
= N\left(r, \frac{f^{(k)}}{z}\right) + N\left(r, \frac{1}{f^{(k)} / z}\right) + N\left(r, \frac{1}{\Psi - 1}\right) + S(r,\Psi)
\]

\[
\leq \frac{1}{k + 3 + k} N\left(r, \frac{f^{(k)}}{z}\right) + \left[kN(r, f) + (k + 1)N\left(r, \frac{1}{f}\right)\right] + N\left(r, \frac{1}{\Psi - 1}\right) + S(r,\Psi)
\]

\[
\leq \frac{1}{2k + 3} N\left(r, \frac{f^{(k)}}{z}\right) + \frac{k}{2k + 3} N\left(r, \frac{f^{(k)}}{z}\right) + N\left(r, \frac{1}{\Psi - 1}\right) + S(r,\Psi)
\]

If possible, suppose that \(f^{(k)} - z \) has no simple zero, then

\[
T(r,\Psi) \leq \frac{1}{2k + 3} N\left(r, \frac{f^{(k)}}{z}\right) + \frac{k}{2k + 3} N\left(r, \frac{f^{(k)}}{z}\right) + \frac{1}{2} N\left(r, \frac{1}{\Psi - 1}\right) + S(r,\Psi)
\]

\[
\leq \frac{1}{2k + 3} T(r,\Psi) + \frac{k}{2k + 3} T(r,\Psi) + \frac{1}{2} T(r,\Psi) + S(r,\Psi)
\]

\[
\leq \left[\frac{4k + 5}{4k + 6}\right] T(r,\Psi) + S(r,\Psi)
\]

That is \[\left[\frac{1}{4k + 6}\right] T(r,\Psi) \leq S(r,\Psi) \]

Since \(k \geq 1 \), we get a contradiction. Therefore \(f^{(k)} - z \) must have some simple zeros.

6.3 PROOFS OF THE THEOREMS

PROOF OF THEOREM 6.1.1

If possible suppose that \(F \) is not normal at \(z_0 \in D \). Then \(F = \left\{ \frac{1}{f} : f \in F \right\} \) is not normal at \(z_0 \in D \). Let \(\alpha = 1 \), then by Lemma 6.2.1, there exist a sequence of
functions $f_j \in F$, a sequence of complex numbers $z_j \to z_0$ and a sequence of positive numbers $\rho_j \to 0$ such that $g_j(\zeta) = \rho_j^{-1} f^{-1}(z_j + \rho_j \zeta)$ converges spherically and locally uniformly to a non constant meromorphic function $g(\zeta)$ in C. Also, the order of g does not exceed two and g has multiple zeros.

Again by Hurwitz's Theorem g has multiple poles.

By Lemmas 6.2.3 and 6.2.4, we see that there exists $\zeta_0 \in C$ such that

$$g'(\zeta_0) - \zeta_0 = 0 \quad \text{...(6.3.1)}$$

Since ζ_0 is not a pole of g, it follows that $g_j(\zeta)$ converges uniformly to $g(\zeta)$ in some neighborhood of ζ_0.

We also see that $-\frac{1}{g'(\zeta)} \{g'(\zeta) - \zeta\}$ is the uniform limit of $\rho_j^{-1} \left\{f_j'(\zeta) + \zeta f_j^2 - a\right\}$ in some neighborhood of ζ_0. In view of (6.3.1) and Hurwitz's Theorem there exists a sequence $\zeta_j \to \zeta_0$ such that $f_j'(\zeta_j) + \zeta_j f_j^2 - a = 0$.

So by the given condition, we have

$$|g_j(\zeta_j)| = \frac{1}{\rho_j f_j(z_j + \rho_j \zeta_j)} \leq \frac{1}{\rho_j M}.$$

Since ζ_0 is not a pole of g, there exists a positive number K such that in some neighborhood of ζ_0, we get $|g(\zeta)| \leq K$.

Since $g_j(\zeta)$ converges uniformly to $g(\zeta)$ in some neighborhood of ζ_0. We get for all large values of j and for all ζ in that neighborhood of ζ_0

$$|g_j(\zeta) - g(\zeta)| < 1$$

Since $\zeta_j \to \zeta$, we get for all large values of j

$$K \geq |g(\zeta_j)| \geq |g_j(\zeta_j)| - |g(\zeta_j) - g_j(\zeta_j)| \geq \frac{1}{\rho_j M} - 1,$$

which is contradiction. This proves the theorem.
PROOF OF THEOREM 6.1.2

Let \(a = k \). If possible suppose that \(F \) is not normal at \(z_0 \in D \). Then by Lemma 6.2.1 and Note 6.2.1 there exists a sequence of functions \(f_j \in F \), a sequence of complex numbers \(z_j \to z_0 \), and a sequence of positive numbers \(\rho_j \to 0 \) such that

\[
g_j(\zeta) = \rho_j^{-k} f_j(z_j + \rho_j \zeta)
\]

converges spherically and locally uniformly to a non-constant meromorphic function \(g(\zeta) \) in \(C \). Now by conditions (i) and (ii) and Hurwitz’s theorem we see that \(g(\zeta) \) has no zero and has no pole of multiplicity less than \(k + 2 \).

Now by Lemma 6.2.8, \(g^{(i)}(\zeta) - z \) has a simple zero at a point \(\zeta_0 \in C \). Since \(\zeta_0 \) is not a pole of \(g(\zeta) \), in some neighborhood of \(\zeta_0 \), \(g_j(\zeta) \) converges uniformly to \(g(\zeta) \).

Since

\[
g_j^{(i)}(\zeta) - z + \sum_{i=0}^{k-1} a_i \rho_j^{i+1} g_j^{(i)}(\zeta) = f_j^{(i)}(z_j + \rho_j \zeta) + \sum_{i=0}^{k-1} a_i f_j^{(i)}(z_j + \rho_j \zeta) - z
\]

\[
= H(f_j(z_j + \rho_j \zeta) - z)
\]

and

\[
\sum_{i=0}^{k-1} a_i \rho_j^{i+1} g_j^{(i)}(\zeta)
\]

converges uniformly to zero in some neighborhood of \(\zeta_0 \), it follows that \(g^{(i)}(\zeta) - z \) is the uniform limit of \(H(f_j(z_j + \rho_j \zeta) - z) \).

Since \(\zeta_0 \) is a simple zero of \(g^{(i)}(\zeta) - z \), by Hurwitz’s theorem there exists a sequence \(\zeta_j \to \zeta_0 \) such that \(\zeta_j \) is a simple zero of \(H(f_j(z_j + \rho_j \zeta) - z) \).

So by the given condition \(|f_j(z_j + \rho_j \zeta_j)| \geq M \) for all large values of \(j \).

Hence for all large values of \(j \) we get \(|g_j(\zeta_j)| \geq M/\rho_j^k \) and as the last part of the proof of Theorem 6.1.1 we arrive at a contradiction. This proves the theorem 6.1.2.
PROOF OF THEOREM 6.1.3

Let $\alpha = \frac{k}{1 + n} < 1$. If possible suppose that F is not normal at $z_0 \in D$. Then by Lemma 6.2.1 there exists a sequence of functions $f_j \in F$, a sequence of complex numbers $z_j \to z_0$ and a sequence of positive numbers $\rho_j \to 0$ such that

$$g_j(\xi) = \rho_j^{-a} f_j(z_j + \rho_j \xi)$$

converges spherically and locally uniformly to a non constant meromorphic function $g(\xi)$ in C. Also g has no zero of multiplicity less than k. So $g^{(k)} \neq 0$ and by Lemma 6.2.7, we get

$$g^{(k)}(\xi_0) - \frac{z}{g'(\xi_0)} = 0$$

for some $\xi_0 \in C$.

Clearly ξ_0 is neither a zero nor pole of g. So in some neighborhood of ξ_0, $g_j(\xi)$ converges uniformly to $g(\xi)$.

Now in some neighborhood of ξ_0 we see that $g^{(k)}(\xi) - \xi g^{-a}(\xi)$ is the uniform limit of

$$g_j^{(k)}(\xi) - \xi g_j^{-a}(\xi) - \rho_j^{-a} = \rho_j^{-a} \{f_j^{(k)}(z_j + \rho_j \xi) - (z_j + \rho_j \xi) f_j^{-a}(z_j + \rho_j \xi) - a\}$$

By (6.3.2) and Hurwitz's Theorem there exists a sequence $\xi_j \to \xi_0$ such that for all large values of j

$$f_j^{(k)}(z_j + \rho_j \xi_j) - (z_j + \rho_j \xi_j) f_j^{-a}(z_j + \rho_j \xi_j) = a$$

Therefore for all large values of j it follows from the given condition $|g_j(\xi)| \geq M/\rho_j^a$ and as in the last part of the proof of Theorem 6.1.1, we arrive at a contradiction. This proves the theorem 6.1.3.