CHAPTER-IV

Pervaporation Separation of Water-Acetic Acid Mixtures Through NaY Zeolite Incorporated Sodium Alginate Membranes

ABSTRACT
The pervaporation separation and swelling behaviour of water-acetic acid mixtures were investigated at 30, 40 and 50°C using pure sodium alginate and its zeolite incorporated membranes studied in Chapter III. The effects of zeolite loading and feed composition on the pervaporation performance of the membranes were analyzed. Both the permeation flux and selectivity increased simultaneously with increasing zeolite content in the polymer matrix. This was discussed on the basis of a significant enhancement of hydrophilicity, selective adsorption and molecular sieving action including creation of pores in the membrane matrix. The membrane containing 30 mass % of zeolite exhibited the highest separation selectivity of 42.29 with a flux of 3.80 x 10^{-2} kg/m²h at 30°C for 5 mass % of water in the feed. From the temperature dependency of diffusion and permeation data, the Arrhenius activation parameters were estimated. The E_p and E_D values ranged between 72.28 and 78.16, and 70.95 and 77.38 kJ/mol, respectively. The almost equal magnitude obtained in E_p and E_D values, signified that both permeation and diffusion contribute equally to the PV process. All the membranes exhibited positive ΔH_s.
values, suggesting that heat of sorption is dominated by the Henry’s mode of sorption.

Results of this Chapter have been published in Journal of Applied Polymer Science, 94 (2004) 2104-2109.

IV.1. INTRODUCTION
Membrane separation techniques, with an easy operation and high energy savings, are greatly appreciated in a variety of applications in the medical, food, industrial, energy and environment fields [1]. Pervaporation is also a membrane-based technique in which the membrane functions as a selective barrier for the mixture to be separated. Because of low energy consumption and mild working conditions, PV becomes a promising process in the chemical industry for the separation of azeotropic mixtures, close boiling mixtures and dehydration of temperature-sensitive products [2-4].

The research efforts on the pervaporation process have been mainly concentrated on the separation of alcohol-water system, but the separation of acetic acid-water system has received relatively less attention [5,6]. Acetic acid is an important basic chemical in the chemical industry, ranking among the top 20 organic intermediates. The current processes for acetic acid production include the carbonylation of methanol, the liquid-phase oxidation of hydrocarbons and the oxidation of acetaldehyde. One process for reducing the cost of acetic acid is fermentation of biomass, forestry residues, municipal wastes and other byproducts [7]. The concentration of acetic acid obtained in this process is usually lower than
5 wt % [8,9]. Azeotropic distillation and extractive distillation have been developed for acetic acid recovery, but distillation is energy-intensive because of the small differences in the volatilities of water and acetic acid in dilute aqueous solution [10,11]. However, PV has the potential to separate acetic acid from aqueous mixtures, because the chemical potential gradient across the membrane is the driving force for mass transport.

Sodium alginate (SA) is a membrane material with potential applications in dehydrating organic aqueous solutions. As known, its performance exceeds that of poly(vinyl alcohol) (PVA) [12], ion-exchange resins [13] and some other polysaccharides with similar chemical structures such as chitosan [14] and cellulose [15]. This is the reason that SA is a prospective membrane material that can be applied in treating organic solvents, which are of great economic value in medical and agrochemical industries. However, the performance of a pure SA membrane is still not satisfactory because of a large free-volume between the molecular chains [16]. Its membrane performance has been improved by modifying alginate with different methods such as blending [17,18], grafting [19] and crosslinking [20,21]. Alternatively, incorporation of highly selective zeolite into the membrane matrix can also be effective. For instance, Gao et al. [22] and Chen et al. [16], respectively, studied the pervaporation separation of hydrophilic zeolite-filled PVA and chitosan membranes for organic-water systems. The incorporation of such zeolites or porous fillers in dense membranes can improve
the separation performance of the membrane [23-25] as a result of the combined effects of molecular sieving action, selective adsorption and difference in diffusion rates. In addition, zeolites have high mechanical strength and good thermal and chemical stability; thus, the membranes incorporated with zeolites, can be used over a wide range of operating conditions.

In the PV process, the simultaneous enhancement of both selectivity and flux has been a big challenge as a consequence of a trade-off phenomenon, existing between flux and selectivity, although much research effort is being continued to overcome the situation by enhancing the hydrophilicity of the membrane by different methods such as γ-irradiation, chemical grafting and plasma deposition [4,26,27]. Recently, we succeeded in increasing both selectivity and flux by judiciously incorporating different amounts of suitable hydrophilic zeolite into SA membranes for the separation of water-isopropanol mixtures [25].

In continuation, the pervaporation study is now extended for the separation of water-acetic acid mixtures at 30, 40 and 50°C. The values of permeation flux, separation selectivity and diffusion coefficient were evaluated. From the temperature dependency of the permeation flux and diffusion coefficient data, the Arrhenius activation parameters were estimated. These results are discussed in terms of the PV separation ability of the membranes.
IV.2. EXPERIMENTAL

IV.2.1. Materials

Sodium alginate (SA) and acetic acid (HAc) were purchased, respectively, from Luba Chemicals (Mumbai, India) and s. d. fine Chemicals (Mumbai, India). NaY zeolite was kindly supplied by Indian Petrochemicals Corp. (Baroda, India). All the chemicals were of reagent grade and used without further purification. Double-distilled water was used throughout the research work. The physico-chemical properties of NaY zeolite are given in previous Chapter III.

IV.2.2. Membrane Preparation

The membranes were prepared as per the procedure discussed in Chapter III. The physical and spectroscopic properties of the derivatized membranes, in relation to their structure variation, are described in Sections III.3.1.

IV.2.3. Pervaporation Experiments

Pervaporation experiments have been carried out using an indigenously designed apparatus given in Fig. II.3. The water composition of the feed mixture varied between 5 and 25 mass %. The rest of the procedure was followed as described in Section II.2.3.

Membrane performance was studied by calculating the total flux (J), separation factor (α_{sep}) and pervaporation separation index (PSI). These were calculated, respectively, using the equations (II.8-II.10). The results of permeation
of water-acetic acid mixtures during the pervaporation were reproducible within the admissible range.

IV.2.4. Swelling Measurements

The degree of swelling of membranes was carried out by soaking in different compositions of water-acetic acid mixtures for 24 h at 30°C. The further procedure including the calculation of degree of swelling was followed as discussed in Section II.2.2.

IV.3. RESULTS AND DISCUSSION

IV.3.1. Swelling Study

IV.3.1.1. Effects of feed composition and zeolite loading on membrane swelling

It has been realized since the pioneering work of Flory and Rehner, reported in the early 1950s, that polymer swelling in certain liquids depends on various parameters such as chemical composition and microstructure of the polymer and incorporated moiety, which strongly influence water sorption mechanism. In the PV experiment, membrane swelling is an important factor that controls the transport of permeating molecules under the chemical potential gradient.

In an effort to study the effects of feed composition and zeolite loading on membrane swelling, the percentage degree of swelling of all the membranes was plotted as a function of different mass % of water in the feed at 30°C, as shown in Fig. IV.1.
It is observed that the degree of swelling increased exponentially for all the membranes with increasing mass % of water in the feed. This is attributed to strong interactions between the hydroxyl and COO' groups of SA with the water molecules. As the water concentration increased in the feed, the interaction with water becomes more predominant, given that water causes a greater degree of swelling than that of acetic acid with the membrane.

On the other hand, when the polymer matrices are filled with highly symmetrical zeolite particles, then it is likely that the pores of the membranes might have been occupied by the zeolite particles. This leads to an increased degree of swelling over that of pure SA membrane, as observed in Fig. IV.1.
However, the effect is significantly increased from membrane M-1 to M-3 with increasing zeolite content. This is mainly because of the hydrophilic nature of the incorporated NaY zeolite in the membrane matrix. Besides, the incorporated NaY zeolite contains Na\(^+\) ions in its channels, which tend to increase the electrostatic force of attraction between the water molecules and membrane. Thus, these combined properties substantially increase the adsorption of water molecules, resulting in greater swelling with increasing the zeolite content in the membrane.

IV.3.2. Pervaporation Performance

IV.3.2.1. Effects of feed composition and zeolite loading on pervaporation

To study the effects of feed composition and zeolite loading on the permeation, the total permeation flux was plotted for all the membranes as a function of different mass % of water in the feed, as shown in Fig. IV.2. It is observed that the total permeation flux increased almost linearly for all the zeolite-incorporated SA membranes with increasing amounts of water in the feed, attributed to an increase of selective interactions between water molecules and zeolite-incorporated SA membrane. However, for pure SA membrane (M), the permeation flux increased linearly up to 10 mass % of water in the feed and beyond this, the permeation flux increased exponentially. This may be the result of attaining the saturation of interactive groups (COO\(^-\) and OH) of sodium alginate with increasing the water concentration in the feed. However, this phenomenon does not occur with the zeolite-incorporated SA membranes, wherein the increase of NaY zeolite content
in membrane enhances the selective interactions between the water molecules and the membrane. This is mainly attributed to the combined influence of ionic species (Na⁺) present in the zeolite cages and porous nature of zeolite, apart from hydrophilic nature of the membrane material. These are together responsible for higher permeation flux with increasing water concentration in the feed, as evidenced by swelling study.

![Graph showing total flux vs. water in the feed](image)

Fig. IV.2. Variation of total flux with different mass % of water in the feed at 30°C for different membranes.

Overall selectivity of a membrane in PV process is generally determined on the basis of interaction between the membrane and permeating molecules, molecular size of the permeating species and pore diameter of the membrane. Figure IV.3 displays the effects of water composition and zeolite loading on
selectivity of the membranes. It is observed that the selectivity decreased monotonically for all the membranes with increasing water concentration in the feed, attributed to greater swelling with increasing water concentration in the feed because of an increase of selective interaction between the membrane and water molecules. On the contrary, the selectivity increased from membrane M to M-3 upon increasing the NaY zeolite content in the membrane throughout the investigated range of water compositions. This is attributed to the increased selective interactions with increasing zeolite content in the membrane matrix. Further, it can be clearly observed from Fig. IV.4, in which the flux and selectivity were plotted as a function of zeolite content in the membrane at 10 mass % of water in the feed.

Fig. IV.3. Variation of separation selectivity with different mass % of water in the feed at 30°C for different membranes.
It is noticed that both the permeation flux and selectivity increased with increasing zeolite content in the membrane. Generally, by increasing the packing density of the membrane, either by increasing the crosslinking density or by incorporating the zeolite in the polymer matrix, the permeation flux decreases and selectivity increases because of creation of pores within the membrane matrix [2,18,19]. In the present study, however, both the permeation flux and selectivity increased simultaneously with increasing packing density. Although this is in contrast to the trade-off phenomenon, frequently encountered between flux and separation factor in PV process, a significant enhancement of hydrophilicity, selective adsorption and molecular sieving action overcome the situation by introducing porous zeolite containing ionic particles in the membrane matrix [25].

![Graph showing the variation of total flux and selectivity with different mass % of zeolite incorporated membranes at 10 mass % of water in the feed.](image)

Fig. IV.4. Variation of total flux and selectivity with different mass % of zeolite incorporated membranes at 10 mass % of water in the feed.
The results of total flux and selectivity, and fluxes of water and acetic acid, measured at 30°C for all the membranes in the investigated feed compositions, are presented in Tables IV.1 and IV.2, respectively. It is observed that there is a systematic increase of total flux and fluxes of water and acetic acid with increasing amounts of zeolite and feed composition. Similarly, the selectivity increased systematically with increasing amounts of zeolite throughout the investigated range of water composition, indicating that the addition of zeolite increases the selectivity of the membranes.

Table IV.1. Pervaporation flux and separation selectivity data for different mass % of water in the feed at 30°C for different membranes

<table>
<thead>
<tr>
<th>Mass % of water</th>
<th>$J \times 10^2$ (kg/m²h)</th>
<th>α_{sep}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>M-1</td>
<td>M-2</td>
</tr>
<tr>
<td>5</td>
<td>2.24</td>
<td>2.87</td>
</tr>
<tr>
<td>10</td>
<td>3.44</td>
<td>3.80</td>
</tr>
<tr>
<td>15</td>
<td>4.07</td>
<td>4.39</td>
</tr>
<tr>
<td>20</td>
<td>4.65</td>
<td>5.53</td>
</tr>
<tr>
<td>25</td>
<td>5.05</td>
<td>6.49</td>
</tr>
</tbody>
</table>
Table IV.2. Pervaporation fluxes of water and isopropanol at different mass % of water in the feed at 30°C for different membranes.

<table>
<thead>
<tr>
<th>Mass % of water</th>
<th>(J_w \times 10^2) (kg/m²h)</th>
<th>(J_{IPA} \times 10^2) (kg/m²h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>M-1</td>
</tr>
<tr>
<td>5</td>
<td>1.34</td>
<td>1.77</td>
</tr>
<tr>
<td>10</td>
<td>2.24</td>
<td>2.53</td>
</tr>
<tr>
<td>15</td>
<td>2.73</td>
<td>3.01</td>
</tr>
<tr>
<td>20</td>
<td>3.17</td>
<td>3.98</td>
</tr>
<tr>
<td>25</td>
<td>3.53</td>
<td>4.83</td>
</tr>
</tbody>
</table>

IV.3.3. Pervaporation Separation Index (PSI)

Pervaporation separation index (PSI), defined as the product of total permeation and separation factor, has been used as a performance-evaluating parameter. Figure IV.5 shows the variation of PSI as a function of zeolite content in the membrane at 30°C for 10 mass % of water in the feed. It is observed that the PSI values increased almost linearly with increasing the zeolite content, signifying that the membranes incorporated with higher amount of zeolite showed better performance for the separation of acetic acid-water mixtures, attributed to the incorporation of zeolite into a membrane matrix that changes not only the membrane’s hydrophilicity but also its structure, which may have a significant

Chapter-IV 121
Influence on diffusion. Sorption is only the first step but in the second step (diffusion), the different properties of zeolite and their significant role in the membrane improve the overall pervaporation performance.

![Graph showing variation of pervaporation separation index with different mass % of zeolite incorporated membranes at 10 mass % of water in the feed.](image)

Fig. IV.5. Variation of pervaporation separation index with different mass % of zeolite incorporated membranes at 10 mass % of water in the feed.

IV.3.4. Diffusion Coefficient

The diffusion coefficients were calculated using the equation III.2 [28,29]. The calculated values of D_i at 30°C are presented in Table IV.3. Similar to pervaporation study, the diffusion coefficients of water as well as acetic acid increased from membrane M to M-3 at all water compositions in the feed. This is attributed to a decrease of cohesive energy of the polymer upon increasing the zeolite content in the membrane matrix, which leads to the increased diffusivity.
Table IV.3. Diffusion coefficients of water and acetic acid calculated from Eq. III.2 at different mass % of water in the feed for different membranes.

<table>
<thead>
<tr>
<th>Mass % of water</th>
<th>$D_w \times 10^8$ (m2/s)</th>
<th>$D_{HAc} \times 10^8$ (m2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>M-1</td>
</tr>
<tr>
<td>5</td>
<td>5.41</td>
<td>7.19</td>
</tr>
<tr>
<td>10</td>
<td>4.51</td>
<td>5.11</td>
</tr>
<tr>
<td>15</td>
<td>3.66</td>
<td>4.04</td>
</tr>
<tr>
<td>20</td>
<td>3.18</td>
<td>4.01</td>
</tr>
<tr>
<td>25</td>
<td>2.84</td>
<td>3.89</td>
</tr>
</tbody>
</table>

However, there is a decrease in diffusion coefficients of water for all the membranes by increasing the amount of water in the feed. Such a decrease is quite common at higher composition of water in the feed because of enhanced swelling behaviour of the membrane. On the contrary, diffusion coefficients of acetic acid increased for all the membranes with increasing water composition in feed, a result expected because of deterioration of membrane selectivity towards water at higher composition of water in the feed. However, the magnitude of acetic acid is quite small compared to that of water, suggesting that the membranes used in the present study are selective towards water.

Chapter-IV 123
IV.3.5. Effect of Temperature

The effect of operating temperature on PV performance was studied for all the membranes at 10 mass % of water in the feed and the resulting values are presented in Table IV.4.

Table IV.4. Pervaporation flux and separation selectivity at different temperatures for different membranes at 10 mass % of water in the feed.

<table>
<thead>
<tr>
<th>Temp. (°C)</th>
<th>M</th>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
<th>M</th>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.44</td>
<td>3.80</td>
<td>4.39</td>
<td>5.00</td>
<td>16.71</td>
<td>17.95</td>
<td>20.03</td>
<td>20.80</td>
</tr>
<tr>
<td>40</td>
<td>10.20</td>
<td>10.40</td>
<td>11.60</td>
<td>12.60</td>
<td>12.69</td>
<td>13.36</td>
<td>14.20</td>
<td>14.68</td>
</tr>
<tr>
<td>50</td>
<td>25.50</td>
<td>26.20</td>
<td>27.00</td>
<td>29.50</td>
<td>4.43</td>
<td>5.17</td>
<td>6.38</td>
<td>6.87</td>
</tr>
</tbody>
</table>

It is observed that the permeation rate increased from 30 to 50°C, whereas the separation factor decreased, which is a result of decreased interaction between permeates, and permeates and membrane at higher temperature, which predominates the plasticizing effect on the membrane. Therefore, the permeation of diffusing molecules and the associated molecules through the membranes becomes easier, resulting in an increase of total permeation rate while suppressing the selectivity. However, at lower temperature the transport of water molecules through the membrane matrix is prominent.

The temperature dependency of permeation and diffusion for water can be studied using the Arrhenius type relationship [12]:

Chapter-IV 124
where, X represents diffusion (D) or permeation (J), X_0 is a constant representing pre-exponential factor of D_0 or J_0; and E_x represents activation energy for permeation or diffusion, depending upon the transport process under consideration; and RT is the usual energy term. As the feed temperature increases, vapour pressure in the feed compartment also increases, although the vapour pressure at the permeate side is not affected. All these result in an increase of the driving force with increasing temperature.

Arrhenius plots of $\log J$ versus $1/T$ and $\log D$ versus $1/T$ are shown in Figs. IV.6 and IV.7 for the temperature dependence of permeation flux and diffusion, respectively. In both the cases, linear behaviour is observed, suggesting that permeability and diffusivity follow an Arrhenius trend. From least-squares fits of these linear plots, the activation energy values for permeability (E_p) and diffusivity (E_D) were estimated and the results thus obtained are presented in Table IV.5. It is noticed that a pure membrane (M) exhibits higher E_p and E_D values compared to those of zeolite-incorporated membranes (M-1 to M-3). This suggests that both permeating and diffusing molecules require more energy for transport through the pure membrane (M) because of its dense nature. Obviously, zeolite-incorporated membranes take less energy because of a molecular sieving action attributed to the presence of sodalite cages and super cages in the framework of zeolite [25].

Chapter-IV 125
result, activation energies for permeation and diffusion decreased systematically from membrane M to M-3 with increasing zeolite content.

Fig. IV.6. Variation of log J with temperature for different membranes at 10 mass % of water in the feed.

Fig. IV.7. Variation of log D with temperature for different membranes at 10 mass % of water in the feed.
Table IV.5. Arrhenius activation parameters for permeation and diffusion, and heat of sorption.

<table>
<thead>
<tr>
<th>Parameters (kJ/mol)</th>
<th>M</th>
<th>M-1</th>
<th>M-2</th>
<th>M-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_p</td>
<td>78.16</td>
<td>77.06</td>
<td>73.96</td>
<td>72.28</td>
</tr>
<tr>
<td>E_D</td>
<td>77.38</td>
<td>76.11</td>
<td>72.79</td>
<td>70.95</td>
</tr>
<tr>
<td>ΔH_s</td>
<td>0.78</td>
<td>0.95</td>
<td>1.17</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Although E_p values are higher than those of E_D values in all the membranes, the difference is not significant, indicating that both permeation and diffusion almost equally contribute to the PV process. The E_p and E_D values ranged between 72.28 and 78.16, and 70.95 and 77.38 kJ/mol, respectively. Using these values, we have calculated the heat of sorption as:

$$\Delta H_s = E_p - E_D$$ \hspace{1cm} (IV.2)

The resulting ΔH_s values are included in Table IV.5. The ΔH_s values give the additional information about the transport of molecules through the polymer matrix. It is a composite parameter involving contributions of both Henry-type and Langmuir-type of sorption. Henry’s law states that the heat of sorption will be positive for liquid transport, leading to the dissolution of chemical species into that site within the membrane, giving an endothermic contribution to the sorption process. However, Langmuir’s sorption requires the pre-existence of a site in

Chapter-IV 127
which sorption occurs by a hole filling mechanism, giving an exothermic contribution. In the present study, the ΔH_s values obtained are slightly positive for all the membranes, suggesting that Henry’s sorption is still predominant, giving an endothermic contribution.

IV.4. CONCLUSIONS

Sodium alginate membranes, incorporated with higher amount of NaY zeolite, showed better performance while separating water-acetic acid mixtures. An increase of zeolite content in the membrane results a simultaneous increase of both permeation flux and selectivity. This is attributed to a significant enhancement of hydrophilic character, selective adsorption and molecular sieving action including creation of pores in the polymer matrix. The PV separation index data also indicated that higher the loading of zeolite, better is the membrane performance. The highest separation selectivity was found to be 42.29 with a flux of 3.80×10^2 kg/m2 h for the membrane with the highest loading of zeolite at 30°C for 5 mass % of water composition in the feed. With respect to temperature effect, permeation rate increased, while suppressing the selectivity when the temperature was increased, a phenomenon attributed to increasing the predominance of plasticizing effect on the membrane when the interaction becomes weaker between permeating molecules, and permeants and membrane at higher temperature.

The E_p and E_D values ranged between 72.28 and 78.16, and 70.95 and 77.38 kJ/mol, respectively. The zeolite incorporated membranes exhibited lower
activation energy compared to that of a pure membrane, indicating that the permeants require less energy during the process because of molecular sieving action attributed to the presence of sodalite cages and super cages in the framework of zeolite. The almost equal magnitude of E_p and E_D values suggest that both permeation and diffusion contribute equally to the PV process. For all the membranes, Henry's mode of sorption dominates the process, giving an endothermic contribution.

IV.5. REFERENCES

