CHAPTER - III

MULTI PURPOSE IRRIGATION PROJECTS
CHAPTER - III
MULTI PURPOSE IRRIGATION PROJECTS

I) Historical background

Introduction

Irrigation in India is not a new phenomenon, through the ages, peasants of the country utilizing water for agriculture from construction of a large number of tanks and build up dams across the rivers. Agriculture was one of the major sources in ancient India. In Indus or Harappan civilization, agriculture was practiced on the monsoon as well as ‘irrigation’. This marks the beginning of irrigation in India.

Ancient period: In the time of Siddharth Gautama Buddha there was a dispute between Sakyas and Koliyas for irrigating their field from the waters of the Rohini river as to who should take the water of the Rohini first and how much, this resulted in quarrels and some times in affrays.¹ This event states that the ‘Scientific irrigation’ and ‘water disputes’ began in the early ancient Indian History. There are several records regarding Dams and Irrigation in the pages of Medieval and Modern Indian History.

Modern period: The Karnataka History reveals about Irrigation and Dam that the rulers of Karnataka undertook construction of a large number of tanks and paid maximum attention to irrigation. But in later period Vijayanagar rulers did put up a dam across the Cauvery in 1347 near Talakadu, impounded the waters of Kumud Vati rivulet to creat Masur Magada (which is over 400 acres in area), dug many canals from the Tungabhadra near the capital and tapped maximum quantity of waters for irrigation from rivers. The Mysore ruler Kanthivarava Narasaraja Wodeyar’s Bangaradoddi Canal (17th Century) drawn from the
Cauvery is famous. Chikkadevaraya raised Chucnchanakatte dam, a brick work during the same century. During the pre-independence era, the British and Mysore State Government took up some notable irrigation works such as Krishnarajasagar, Sagarakatte Dam etc.²

Pre-Independence: Only some sporadic local efforts and investigations in development of irrigation, waterways and navigation had been made by the center from time to time during the 19th century. It was for the first time in 1919, a comprehensive constitutional reform was introduced as part of "The Montagu Chelmsford Reform Act", under which "irrigation, canal, drainage, embankment and water storage including famine relief and agriculture and forest" became a state subject but coming under the control of the Central Government where so provided by the Indian legislation.

Subsequently, the Government of India Act 1935 had enhanced the provincial autonomy and the provincial Governments had got exclusive powers over "water, that is to say, water supplies, irrigation and canals, drainage and embankments, water storage and water power, depriving the Central Government of any role in the development of irrigation.

Neither the Government of India Act of 1919 nor the Act of 1935 had any provisions to enable the Central Government to take the action to provide any irrigation and hydro-electric project. Under the circumstances, there was no office at the center to look after the development of irrigation and electricity in India. The planning efforts had been undertaken exclusively on a local basis prior to 1940.

This was the state of affairs prior to Dr. B.R. Ambedkar taking charge of the Irrigation and Electric Power Department as Member of the Executive Council of the Viceroy in July 1942. It was for the first time that the centre began to consider planning as a fundamental subject for water, power, mineral resource etc. on a comprehensive all India scale and against an all India background.
Under Dr. Ambedkar’s direction the water resource policy evolved and it led to the creation of two premier technical organizations at the center, namely the Central Waterways, Irrigation and Navigation Commission and Central Technical Power Board. It was accepted by all concerned that best way of development interstate rivers was by adopting the concept of comprehensive planning with multipurpose projects through a multi-disciplinary river valley Development Authority. It was the beginning of an important present day river valley project in the country, namely the Damodar Valley Project. In view of the benefits of multipurpose project enunciated by Dr. Ambedkar there was general agreement on the question of making the Damodar scheme a multipurpose project.

In the first conference on Damodar Valley Project (Calcutta, January 3, 1944) Dr. Ambedkar asserted:

“The Damodar project must be multipurpose project… it should not only deal with problem caused by floods, it also should provide for irrigation, electricity and navigation…. There has not been enough realization that our policy for water resources development must be multipurpose policy so as to include all possible uses of water”. The Damodar valley corporation Bill was presented to the Constituent Assembly in December 1947 and was passed on February 1948. (P. Abraham, 2000).

Bhakra Nangal Dam project, which has a long history dating as far back as 1908 when the idea was first conceived, remained an unrealized dream for about 40 years. But major steps were taken during 1942-46 when Dr. Ambedkar was Member in-charge of Irrigation and power of Viceroy’s Executive Council, to take concrete steps to see that Bhakra dam project should be taken up on priority. The dam is located on the Sutlej river, one of the five main tributaries of the Indus river. The irrigation aspect of the Bhakra Dam Project primarily deals with
Agriculture is the predominant activity of the people of this region. Thus the Bhakra Dam ultimately took the shape of a true multipurpose project, providing irrigation for 14.60 lakh hectares and power generation as its main benefits and facilities for flood prevention, recreation and fish culture as incidental advantages.

After Independence: There were several other projects, which have come up based on the multipurpose dam approach, conceived and developed by Dr. Ambedkar notable among them being Sone River Project, Koyna, Nagarjunasagar and Srisailam, Tungabhadra, Upper Krishna Project, Ranapratap Sagar, Balimela, Paramlikulam, Aliyar, Kangsavati Kumar dam etc. The total area irrigated under various such projects in the country comes to about 95 million hectares. These projects, in addition have an installed capacity of about 24,000 MW of hydro-power and provide drinking water for millions of the people in the country. The impact of irrigation facilities on the growth in yields can be seen from the fact that while all food grains yields, stood at 1.4 % increase from 1950-51 to 1964-65 i.e., pre-green revolution period, it has risen by 2.4 % from 1964-65 to 1996-97 and the all non food grains, have registered an impressive growth at 1.6 %. Accordingly agriculture products of all good grains have registered impressive increase from a level of 15 million tones at the time of independence to 195 million tones by 2000-2001.

Not only India’s economy but also its social structure is based upon agriculture. In the area of agricultural production the rapid development in irrigation facilities coupled with introduction of better yielding crop varieties and increased use of fertilizers has made the country achieve self-sufficiency in food. Thus, the water Resources Development in the country on a scientific basis using the concept of multi-reservoir and multi-purpose planning leading to Green Revolution and Food Security of the Country.
II) Submergence of Areas and Resettlement Policy

"The submergence of areas were bound to happen if the waters of rivers were required to be conserved for the use of mankind instead of allowing water to flow to the seas and also cause damage all along its route. The resulting benefits from a scheme of multi-purpose development should far-outweigh loss of lands due to submergence", as stated by Dr. Ambedkar.

Before he laid down office as a member of the Executive Council of Viceroy in June 1946, Dr. Ambedkar ensured that the Resettlement Policy for the rehabilitation of displaced cultivators and non-cultivating households in the submerged areas of Damodar Valley was finalized. The Resettlement Policy was framed on April 22, 1946 by the Labour Department and was approved and agreed in the third Inter-provincial Conference held the next day. It provided for compensation in kind, as far as possible land for land in the command area of the Damodar project, with adequate housing and other amenities. This policy subsequently formed the basis for the resettlement and rehabilitation policy for project affected people in the country. (P. Abraham 2002).

Though, there was no all-India policy on Resettlement and Rehabilitation of the involuntary displaces after Indian Independence. In 1995 the Government of India in the Ministry of Rural Development made an effort to bring a draft policy for rehabilitation of persons displaced as a consequence of Acquisition of Land. However, four Indian States, namely, Maharashtra, Madhya Pradesh, Punjab and Karnataka have passed laws and Orissa has adopted a policy to secure rehabilitation of the resettlers, especially of the water resource development projects. Many states have made provision for effective rehabilitation institutional Mechanisms (Mahapatra 2000). However, before some of states passed a laws or policy on Resettlement and Rehabilitation the constitution of India has provided for certain basic approaches to the issues through the Directive Principle of State Policy in Article 39(b) which states:
The ownership and control of the material resources of the community are so distributed as best to sub-serve the common good” and the Fundamental Right in Article 21 which has been judicially interpreted as ensuring a life with human dignity in association with clauses (e) and (f) of Article 39 and Article 41 and 42. The chief Justice Pathak had held in further interpreting the provision under Article 21:

“Every person is entitled to a quality of life consistent with his human personality. The right to live with human dignity is the fundamental right of every Indian citizen”.

Thus, the deprived displaces have adequate constitutional protection; under Article 31A, the acquisition of land, building or structure provides for payment of compensation at a rate which shall not be less than the market value thereof. Such constitutional protection for displaces made them to enjoy the rights, but, unfortunately, the replacement cost as compensation has not been mentioned here, which would have been fair by all standards.

Though, the history of resettlement policy in India started before India’s Independence, more or less six decades after the first National Policy on Resettlement and Rehabilitation for Project Affected Families - 2003 (published in the Gazette of India, Extraordinary part-I, Section-1, No. - 46, dated 17th February, 2004) has been brought out from the Ministry of Rural Development (Department of Land Resources) Government of India.

III) Upper Krishna Project in Karnataka:

Multi-purpose: The Upper Krishna Project is a massive, long term, multi-purpose development programme. As an irrigation project, when completed, it will irrigate about 6.2 lakh hectares of land in the semi-arid, and drought prone northern districts of Bijapur, Gulbarga and Raichur from the water of Krishna river. As a power project, when completed, it will generate about 1100 mw of hydro-electric
power. This plan is based on the Krishna Water Disputes Tribunal's (KWDT) Award of 1976 which has allocated 20 Billion Cubit Meters (BCM) of the flow of the Krishna river to Karnataka.

The River: The Krishna River is one of the three main rivers in India. It has a catchment of about 2,60,000 Sq. Kms and a total length of 1392 Kms. It originates in the Western Ghats near Mahabaleshwar in the State of Maharashtra at about 1338 m above sea level, and flow from west to east through the States of Maharashtra, Karnataka and Andhra Pradesh, before terminating in the Bay of Bengal. In the upper reaches of the catchment, the hilly terrain receives plentiful rainfall varying from 6350 mm to 3800 mm. The rainfall dwindles to about 500 mm in the plains. The region is drought-prone which affects all aspects of life, particularly the agricultural economy. The soil is generally fertile and can yield good crops through irrigation.

Krishna in Karnataka: The Krishna river enters Karnataka at elevation 533 m msl in its 304th km and traverses a distance of about 408 kms in the state before entering Andhra Pradesh. Of its 2,56,200 sq. km catchment, 68,000 sq. km is in Maharashtra (26.8%), 1,12,600 sq. km is in Karnataka (43.8%) and 75,600 sq. km in Andhra Pradesh (29.4%). In the 1,12,600 sq. km catchment in Karnataka, 92% is classified as agricultural land and 8% as forest land. It traverses through Belgaum, Bijapur, Gulbarga and Raichur districts.

The Components: The Upper Krishna Project consists of construction of two dams and a network of canals. Almatti dam (near the confluence of Ghataprabha and Krishna) is the main storage dam whereas Narayanpur dam is the diversion dam. The latter is located 60 Ks downstream of Almatti (a few kms away from the confluence of Malaprabha and Krishna rivers). The Left and Right Bank Canals and the branch canals of the Left Bank canal are fed from the Narayanpur reservoir. Almatti Reservoir supplies water to 3 lift irrigation schemes and replenishes the Narayanpur reservoir apart from running the six hydro-electric generators to produce 300 MW of power.
Narayanpur Dam: This dam, designed for diversion has been constructed in a relatively flat, broad valley about 60 km downstream of Almatti. Although Narayanpur is in Gulbarga district, the dam location is the meeting point of three districts - Gulbarga, Raichur and Bijapur. The total length of the dam is about 10.6 km and its maximum height is about 29 m. most embankments are only about half as high. The dam height is 495.75 m in masonry portion and 497.1 m in earthen portion. The dam includes a 460 m long concrete spillway with thirty 15×12 m gates, a 560 m long non-overflow masonry dam, and a 9.6 km long earthen dam. Though Narayanpur dam's primary function is diversion, at a full reservoir level (FRL) of El 492.25 m, the reservoir has a gross storage capacity of about 1.066 BCM (37.64 TMC), a live storage of about 0.67 BCM (23.66 TMC), and inundates about 132 sq. km. Of area (15200 Ha).

Almatti Dam: This dam, designed for storage is located in a narrow valley in the Bijapur district, near Almatti village. When completed to ultimate dimensions, it will have a maximum height of about 40 m and a length of about 1.6 km. The dam is imposed of four sections: a 400 m long earthfill on its left flank, a 300 m long masonry section, a 490 m long central masonry and concrete, overflow section, and a 400 m long non-overflow masonry section on the right bank. The latter includes 6 penstocks for (future) 6 turbines which will have a total installed capacity of 297 MW. At its ultimate full reservoir level of 524.256 m above Mean Sea Level (MSL), Almatti reservoir will have a total storage capacity of about 6.5 BCM (227 TMC), a live storage of about 6.1 BCM, and over an area of about 750 sq. km. The ultimate height of the Almatti Dam is 528.3 mtrs. Its crest level is 509 m msl. It has 26 radial gates of 15×15 m operated by hydraulic hoists manufactured in Germany and Netherlands.

Canal System: Originating at Narayanpur, two independent conveyance systems, one on each bank, totally 560.6 kms long, will provide water to lands on the left
and right bank to an aggregate area of about 5,75,000 ha. The left bank area of about 4,25,000 ha to be developed under stage I of the UKP is served by the Narayanpur Left Bank Canal (NLBC) 78 kms and its four branches - the Shahapur (SBC 76 kms), Mudbal (MBC 50.8 kms), Jewargi (JBC 85.26 kms) and Indi (IBC 175 kms) branch canals. The right bank to be developed Right Bank Canal (NRBC 95 kms). Distribution canals, branching off the main system are designed to distribute irrigation supplies within blocks varying in size from 200 ha to 15000 ha. These canals feed field channels each serving 20-50 ha blocks in which they supply water to individual landholdings.

Hydroelectric Power: The power component of the Project consists of installing 4 generators of 70 MW capacity each and 1 generator of 17 MW to generate 297 MW every day at Almatti Dam. Additional 4 cascading units totally generating about 810 MW of power will also be taken up from Narayanpur and 3 other downstream stations. This component is entrusted to a private Company. Six penstocks have been provided in the right flank of Almatti Dam in Stage-I itself.

R&R and LAQ: To complete the project as envisaged, 1,44,000 ha of land is required for construction of dams, canals, roads, RCs and waterspread area of the two reservoirs. Acquisition of 1,44,000 ha of land will displace approximately 80,000 families. It will also affect another 20,000 families who will lose their lands for canals and roads in the command area. Resettlement and rehabilitation of all these PDFs, and PAFs is a major component of UKP. In terms of its size and complexity, the R&R component in the UKP is the biggest of its kind in India.

Project Implementation: Erstwhile Bombay Government as well as Hyderabad Nizam Government had planned to utilize Krishna waters for irrigation development in Bijapur and Raichur districts. After reorganization of new Karnataka state in 1956, amalgamating the earlier investigations into the isolated projects, the UKP was formulated as a single project on a modest scale. The
Since the project was taken up for implementation in 1964, the project size, scope, and designs have been revised upwards many times (in 1960, 1976-77, 1987 and 1995) particularly after 1976 KWDT award.

Stage-I: Since most of the irrigation potential (particularly through gravity canals) is planned to be created in Stage-I, this stage is divided into three district phases. Work on Phase-I of Stage-I commenced in 1964 on a very meager scale. Until 1978, the entire investment was made out of the State's budgetary resources. The world came forward to fund the balance works in Phase-I through IDA Credit (Credit 788-IN).

Upper Krishna (Phase-II) Project: As a continuation project the World Bank agreed to finance Phase-II of the UKP. The five year project starting from August, 1989 and ending on December 31, 1996 was extended upto June 30, 1997.

Resettlement and Rehabilitation Works: Resettlement and Rehabilitation programmes in Phase-II were redesigned as per the World Bank conditions in the Project Agreement and the relevant Government Orders were amended suitably. The following additional benefits sanctioned in Phase-II were made applicable retrospectively to the PDFs of Narayanpur Reservoir resettled in Phase-I project:

1) Land Purchase Grant (varying between Rs. 60,000/- and Rs. 20,000/- per PDF).

2) Income Generating Scheme Grant (varying between Rs. 5,000/- and Rs. 20,000/- per PDF).

3) House Construction Grant of Rs. 22,000/- to each PDF.

4) Additional house sites and housing grant to major sons (upto two), divided adult brothers and unmarried adult daughters beyond the age of 35 years.

These benefits are extended to 6248 PDFs of Narayanpura. The amount were drawn and kept in their joint accounts. The utilization of these benefits except House Construction Grant has been poor.
PDFs of Almatti: Of the 48,338 PDFs including major sons identified by the Socio-Economic Surveys, 45,702 were sanctioned the grants due to them. Of them, 39,586 have the amount kept in their joint accounts and 18,699 have so far utilized the various grants. Utilization of housing grants has been encouraging. Poor utilization of other grants is on account of non-displacement of most of the PDFs from the submerging villages. So far only 38 villages are submerged fully and 24 villages are affected partly in the 1997 monsoon floods. Only about 16,000 PDFs have been actually displaced. They have therefore not yet felt the need for quick utilization of the various grants available to them under the R and R programme.

Resettlement Centers (RCs): Out of the 68 resettlement centers targeted in Phase-II, 66 have been established. In 52 RCs, all facilities such as approach roads, internal roads, drains, culverts, water supply, electricity, demarcated sites, open areas, avenue trees and public building for schools, pre-primary schools, teachers quarters, public toilets for men and women, and wherever necessary veterinary dispensaries, panchayat building, high school, and public health unit have been provided fully. In the remaining 14 centres, all other facilities except buildings are provided and the buildings are nearing completion. 2 centres need to be developed since they are delayed due to court litigation and local feuds. However, more than half the RCs are yet to be occupied by the PDFs.

The Project Affected Area

Introduction: The Upper Krishna Project covers a vast area spread over four contiguous, backward but more populous districts of north Karnataka. The project area includes both the affected area and the benefited area. Most of the affected area is in Bijapur district. 4 villages and their lands in Athani taluk of Belgaum district are also affected by submergence in the backwaters of Almatti reservoir particularly during the floods. While Gulbarga and Raichur districts are benefited...
largely by irrigation under the project, nearly 30,000 hectares of land in these
two districts are acquired for creating canal networks and service roads. Further,
one village in Shorapur taluk of Gulbarga district and 12 villages in Lingasagur
taluk of Raichur district are also submerged in the backwaters of Narayanpur
reservoir. The impact however of acquiring lands for canals and roads in the
benefiting command area is negligible since the left over lands will receive the
benefit of irrigation and the irrigation in the command area will also provide
additional employment and other economic opportunities not only for the families
using lands but also to all others. The negative impact of the project is significantly
higher where vast lands are acquired for reservoirs, rehabilitation centers and
other project purposes in the upstream catchment area. The "Project affected
area" thus refers to those villages where land has been acquired for constructing
irrigation infrastructure, service roads and resettlement centres.

Project Affected Villages (PAV): There are two kinds of Project Affected Villages.
Some villages are submerged in the two reservoirs of the Project whereas other
villages lose only some of their lands for the Project. The former are called the
Project Displaced Villages (PDV) and the latter are called the Project Affected
Villages (PAV). Narayanpur reservoir displaced 43 villages and affected 54 villages
in addition to nearly 300 villages in the command area where the lands were
acquired for canals and service roads. The almatti reservoir as its ultimate level
will displace 158 villages and a major town (Bagalkot) and affect nearly 50 more
villages where only the land will be acquired. Both the reservoirs put together,
when the project will be completed to its ultimate level, will submerge 201 villages
and a town and affect 154 villages. Another nearly 225 villages will be affected
by the acquisition of lands for the canals in the command area of the project.

Impact in Stages: All the above mentioned villages will not be affected at once.
They will be either displaced or affected at different times depending upon the
stage of the project. From 1964 to 1986, 43 villages were displaced and 54 villages were affected by Narayanpur reservoir in Phase-I of Stage-II. From 1997 to 1999, 41 villages will be submerged in the Almatti reservoir in Phase-III of Stage-I. As and when Stage-II works will be taken up, 22 more villages will be displaced by the Almatti reservoir. The number of villages affected by acquisition of lands for the canals will be mainly in Gulbarga and Raichur districts and a few in Bijapur district. All these three are contiguous districts comparable to one another in climatic, geographical and socio-cultural conditions.

The Affected Population: It is estimated that nearly four lakh people will be displaced by the Upper Krishna Project at its ultimate level. Nearly 80,000 families will have to be resettled and rehabilitated. In the displaced population there are 962 women to every 1000 men in Gulbarga district, 965 in Bijapur district and 978 in Raichur district which are higher than the state average of 960 females per 1000 males. Scheduled castes constitute 17.23% of the affected population in Raichur district, 17.43% in Bijapur district and 23.66% population in Bijapur district, 4.1% in Gulbarga district and 7.8% of the population in Raichur district are shown as tribals. This is because of recent classification of Bedars (Kshatriyas) as tribals who in effect do not have any tribal characteristics. The literacy rates vary in the affected districts: 35.96% are literate in Raichur district, 38.54% in Gulbarga district and 55.13% in Bijapur district. Nearly 80% of the population in the affected area depends on agriculture as the main occupation. (Present Bagalkot district was part of Bijapur district whole, before survey of project Affected Population).

The Project Affected Community

Introduction: The project affected community is composed of all the population directly affected by the acquisition of lands and / or houses for the project. In this population, there are two groups - the first group consists of people who have
been displaced by the project since their lands as well as dwelling houses and habitats are acquired. The second group has those people who have lost only lands either for the reservoir or for canals or roads or rehabilitation centers. These two groups face different problems with varying intensity. They require therefore a somewhat different approach and programmes to enable them to regain their standards of living enjoyed before acquisition of their lands or houses. The displaced population requires a more comprehensive package of resettlement and rehabilitation programmes compared to the people who have only lost some or all of their lands. The Karnataka R and R policy provides for mainly land purchase grant (LPG) and income generating scheme grant (IGS) for people who have lost only their lands depending upon the actual extent of loss of land. For displaced people, an elaborate package of R and R entitlements has been made available.

Population Displaced: 201 villages and a town together have 4,00,000 people who will be displaced eventually when the project will be completed. So far Phase-I and Phase-II of Stage-I of the project have been completed. The maximum displacement is caused by the Almatti reservoir. The population affected at different stages and phases of the project is shown below:

Table - 3.1: shows villages and the population displaced at different stages of UKP

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Stage and Phase</th>
<th>Number of villages submerged</th>
<th>Total population displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stage-I Phase-I</td>
<td>43</td>
<td>50,000</td>
</tr>
<tr>
<td>2</td>
<td>Stage-I Phase-II</td>
<td>95</td>
<td>1,66,000</td>
</tr>
<tr>
<td>3</td>
<td>Stage-I Phase-III</td>
<td>41+1*</td>
<td>1,04,000</td>
</tr>
<tr>
<td>4</td>
<td>Stage-II</td>
<td>22</td>
<td>80,000</td>
</tr>
<tr>
<td>Total</td>
<td>201+1</td>
<td>201+1</td>
<td>4,00,000</td>
</tr>
</tbody>
</table>
Acquisition of Land and Structures for the Project

The Upper Krishna Project requires, when it is complete in all respects, approximately 3,30,000 acres of land. Most of this land is private agricultural land which has to acquired in public interest. The project also submerges 201 villages and a major town. In all these settlements approximately 80,000 houses and other structures will be submerged. Almost all these structures are private buildings which also have to be acquired. The following table shows total requirement of lands and submerging buildings for the project for different purposes:

Table - 3.2: shows the acquisition of lands and structures in the UKP

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Purpose of Acquisition</th>
<th>Narayanpur</th>
<th>Almatti</th>
<th>Total</th>
<th>Grand total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submergence (in acres)</td>
<td>35,000</td>
<td>1,89,000</td>
<td>2,24,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Canals (in acres)</td>
<td>55,235</td>
<td>22,866</td>
<td>78,101</td>
<td>3,24,618</td>
</tr>
<tr>
<td>3</td>
<td>Rehabilitation Centres (in acres)</td>
<td>1,911</td>
<td>10,056</td>
<td>11,967</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Roads (in acres)</td>
<td></td>
<td></td>
<td>10,550</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Submerging villages (numbers)</td>
<td>43 Full</td>
<td>158 Full</td>
<td>201 Full</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>54 Part</td>
<td>1 town partly</td>
<td>55 Part</td>
<td>256</td>
</tr>
<tr>
<td>6</td>
<td>Structures (numbers)</td>
<td>15,596</td>
<td>60,500</td>
<td>76,096</td>
<td>76,096</td>
</tr>
</tbody>
</table>
Notes
