CONTENTS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Aim and objectives</td>
<td>9</td>
</tr>
<tr>
<td>3.</td>
<td>Review of literature</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>Materials and methods</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Chapter 1: Isolation of alkaliphilic actinobacteria</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Biosynthesis and characterization of silver</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>nanoparticles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 3: Evaluation of antimicrobial and synergistic</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 4: Characterization of potential actinobacterial</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>isolate</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Results</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Chapter 1: Isolation of alkaliphilic actinobacteria</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Chapter 2: Biosynthesis and characterization of silver</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>nanoparticles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 3: Evaluation of antimicrobial and synergistic</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 4: Characterization of potential actinobacterial</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>isolate</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Discussion</td>
<td>65</td>
</tr>
<tr>
<td>7.</td>
<td>Summary</td>
<td>74</td>
</tr>
<tr>
<td>8.</td>
<td>Conclusion</td>
<td>77</td>
</tr>
<tr>
<td>9.</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>List of publications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobial activity of N.sativa, A.calamus, M.fragans & H.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indicus & its synergistic effect with antibiotics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biosynthesis of silver nanoparticles using extremophilic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>actinomycetes isolated from alkaline soils</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolation and screening of alkalophilic actinobacteria for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biosynthesis & characterization of silver nanoparticles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Watermelon seed extracts & fresh juice in vitro screening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of phytochemical and antimicrobial activity by TLC technique</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>S. No</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diversity of microbial isolates</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>Cultural characteristics of various isolates on SCA</td>
<td>40-41</td>
</tr>
<tr>
<td>3.</td>
<td>IR absorption frequencies of organic functional groups</td>
<td>44</td>
</tr>
<tr>
<td>4.</td>
<td>Peaks and their respective crystal size</td>
<td>46</td>
</tr>
<tr>
<td>5.</td>
<td>EDX profile confirming the presence of silver</td>
<td>48</td>
</tr>
<tr>
<td>6.</td>
<td>Antimicrobial activity of silver nanoparticles by agar well diffusion method</td>
<td>50</td>
</tr>
<tr>
<td>7.</td>
<td>Minimum inhibitory concentration of silver nanoparticles against standard microbial strains</td>
<td>52</td>
</tr>
<tr>
<td>8.</td>
<td>Minimum bactericidal concentration of silver nanoparticles against test pathogens</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>Synergistic activity of silver nanoparticles with antibiotics</td>
<td>53</td>
</tr>
<tr>
<td>10.</td>
<td>Physical evaluation of the formulations used for wound healing activity</td>
<td>56</td>
</tr>
<tr>
<td>11.</td>
<td>Percentage of wound healing activity of silver nanoparticles</td>
<td>56</td>
</tr>
<tr>
<td>12.</td>
<td>Period of epithelialization</td>
<td>57</td>
</tr>
<tr>
<td>13.</td>
<td>Percentage growth of A431 against the test compounds</td>
<td>58</td>
</tr>
<tr>
<td>14.</td>
<td>Larvicidal effect of silver nanoparticles against Culex quinquefasciatus</td>
<td>59</td>
</tr>
<tr>
<td>15.</td>
<td>Cultural characteristics of potent strain on different media</td>
<td>61</td>
</tr>
<tr>
<td>16.</td>
<td>Biochemical characteristics of potent strain</td>
<td>62</td>
</tr>
<tr>
<td>17.</td>
<td>Utilization of sugars by the potent strain</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>S. No</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Preliminary detection of nanoparticle synthesis</td>
<td>42</td>
</tr>
<tr>
<td>2.</td>
<td>Concentration and separation of silver nanoparticles</td>
<td>42</td>
</tr>
<tr>
<td>3.</td>
<td>UV-Vis absorption spectra of silver nanoparticles synthesized by Streptomyces at different time intervals</td>
<td>43</td>
</tr>
<tr>
<td>4.</td>
<td>FT-IR spectral analysis of silver nanoparticles synthesized by cell free extract of Streptomyces</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>XRD analysis</td>
<td>45</td>
</tr>
<tr>
<td>6.</td>
<td>AFM images showing spherical structure of silver nanoparticles</td>
<td>47</td>
</tr>
<tr>
<td>7.</td>
<td>Scanning electron micrograph of silver nanoparticles</td>
<td>47</td>
</tr>
<tr>
<td>8.</td>
<td>EDX spectrum showing the presence of silver nanoparticles</td>
<td>48</td>
</tr>
<tr>
<td>9.</td>
<td>Transmission electron micrograph of silver nanoparticles</td>
<td>49</td>
</tr>
<tr>
<td>10.</td>
<td>Antibacterial activity of silver nanoparticles by well diffusion method</td>
<td>51</td>
</tr>
<tr>
<td>11.</td>
<td>Synergistic effect of silver nanoparticles</td>
<td>53</td>
</tr>
<tr>
<td>12.</td>
<td>Antifungal activity of silver nanoparticles with coated fabrics</td>
<td>54</td>
</tr>
<tr>
<td>13.</td>
<td>Antifungal activity of silver nanoparticles with coated fabrics</td>
<td>54</td>
</tr>
<tr>
<td>14.</td>
<td>Wound healing activity of silver nanoparticles</td>
<td>56</td>
</tr>
<tr>
<td>15.</td>
<td>MTT assay – Nanoparticle treated against A431 cell lines</td>
<td>57</td>
</tr>
<tr>
<td>S. No</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>16</td>
<td>Percentage growth against A431 cells</td>
<td>58</td>
</tr>
<tr>
<td>17</td>
<td>Larvicidal activity of silver nanoparticles</td>
<td>58</td>
</tr>
<tr>
<td>18</td>
<td>Characterization of actinobacteria</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>Scanning electron micrograph of strain D5 showing long spore chains with smooth surfaced spores</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>Biochemical characterization of actinobacteria</td>
<td>61</td>
</tr>
<tr>
<td>21</td>
<td>Phylogenetic relationships of strain D5</td>
<td>64</td>
</tr>
</tbody>
</table>