LIST OF TOPICS

1 INTRODUCTION

I.A. Plant growth is modulated by growth regulators. 2

I.B. Plant growth regulators elicit second messengers. 3

I.C. A large number of new compounds have now been included in the family of plant growth regulators. 11

I.D. Triacontanol (TRIA), a naturally occurring long chain aliphatic alcohol, is a newly discovered plant growth regulator. 12

I.E. 9-β-L(+) adenosine appears to serve as a second messenger of triacontanol. 21

I.F. The physico-chemical properties of membrane lipids mediate the stimulus induced cell function. 22

I.G. Fluorescence spectroscopy has been employed to study membrane dynamics. 29

I.G.1. Fluorescence is the emission of light by molecules during the transition from singlet excited state to ground state following the absorption of light. 29

I.G.2. Fluorescence anisotropy and fluorescence lifetime are the two main properties exhibited by the fluorophores subjected to excitation. 33

I.G.2.a. Fluorescence lifetime is the average period of time the molecule remains in the excited state prior to its return to ground state. 36

I.G.2.b. Fluorescence anisotropy is the ratio of the polarized component to the total intensity of light. 37
I.H. Microviscosity of cell membranes can be determined with the values of fluorescence lifetime and fluorescence anisotropy.

II MATERIALS

II.A. Enzymes:

II.B. Chemicals:

II.C. Gifts:

II.D. Other materials:

III METHODS

III.A Triacontanol did induce changes in vegetative growth of cotton.

III.B. Leaf lipids of cotton were altered by growth regulators.

III.B.1. Cotton (Gossypium hirsutum L.) plants were grown under natural environmental conditions and the plants were treated with growth regulators.

III.B.2. Cotton plants were treated with triacontanol and its second messenger 9-β-L(α) adenosine.

III.B.3. Lipid analysis was carried out under stringent conditions.

III.B.3.a. Total lipids were extracted from the cotyledonary leaves of cotton.

III.B.3.b. Total glycolipids and phospholipids were separated by silicic acid column chromatography.

III.B.3.c. Individual glycolipids and phospholipids were separated by thin layer chromatography.
III.C. Growth regulator-induced changes in the physical properties of protoplast membranes and artificial bilayers were examined.

III.C.1. Protoplasts were isolated from cucumber (Cucumis sativus L.) fruits.

III.C.2. Fluorescent probes, DPH and pyrene were incorporated into the protoplast membranes.

III.C.3. Fluorescent probe incorporated protoplasts were treated with triacontanol and abscisic acid.

III.C.4. Fluorescence anisotropy of membrane-bound fluorophores was studied at different temperatures.

III.C.5. Fluorescence lifetime of membrane-bound pyrene was measured at different temperatures employing Nd-YAG laser of pico second pulses.

III.C.6. Microviscosities of the protoplast membranes at different temperatures were determined by two different methods.

III.C.7. Phospholipids were extracted from hen’s egg and purified.

III.C.8. Liposomes were prepared from purified egg phospholipids.

III.C.9. Fluorescence anisotropies of liposome-bound fluorophores, DPH and pyrene were studied at different temperatures.

III.D. Fatty acid analysis of the protoplast membrane lipids and liposomes were carried out by gas chromatographic method.

III.E. The results were subjected to statistical analysis.

IV RESULTS

IV.A. Growth regulators modulate growth and lipid composition in cotton.
IV.B. Triacontanol stimulates the vegetative growth of cotton plants.

IV.C. Triacontanol stimulates the accumulation of glycolipids and inhibits the levels of phospholipids.

IV.D. Triacontanol induced increase in total glycolipids is mainly due to the increased levels of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG).

IV.E. Benzyladenine (BA) stimulates the accumulation of phosphatidylcholine (PC); BA and TRIA are independent in their action on the lipid composition in cotton.

IV.F. 9-ß-L(+) adenosine, the second messenger of TRIA and TRIA exhibited similar effects in changing the glycolipid levels of cotton.

IV.G. Growth regulators alter the physical status of natural and artificial membranes differently.

IV.H. Fluorescence anisotropy of DPH is altered only by TRIA but not by ABA.

IV.I. Fluorescence anisotropy of pyrene is decreased by both TRIA and ABA individually or in combination.

IV.J. Fluorescence lifetime of pyrene in protoplast membranes is decreased by TRIA as well as ABA.

IV.K. The microviscosity of cucumber fruit protoplast membrane is altered by TRIA and ABA.
IV.L. Decreased microviscosity of the protoplast membranes is reflected on the decrease in rotational correlation time (RCT). 96

IV.M. A change in the activation energy of phase transition occurred in the protoplast membranes after treatment with TRIA. 100

IV.N. Fatty acid composition of protoplast membrane lipids is altered by TRIA and ABA. 100

IV.O. TRIA and ABA individually or in combination increases the fluorescence anisotropy of pyrene incorporated into egg lecithin liposomes. 104

IV.P. TRIA increases the anisotropy of pyrene incorporated into egg lecithin-cholesterol vesicles only between 10-32°C. 104

IV.Q. Treatment of TRIA increases fluorescence anisotropy of DPH in egg lecithin liposomes only between 10-22°C. 111

IV.R. Increase in fluorescence anisotropy of DPH is observed in egg lecithin-ABA or egg lecithin-ABA-TRIA liposomes. 111

IV.S. Fatty acid analysis of egg lecithin indicates higher level of unsaturated fatty acids. 114

V. DISCUSSION 117

V.A. The growth promoting effect of TRIA is also found in cotton. 118

V.B. The change in the lipid composition of cotyledonary leaves of cotton by tricontanol is noticed irrespective of the impact of external environmental factors. 118
V.C. Triacontanol and Benzyladenine are independent in their action on lipid metabolism in cotton.

V.D. Indole-3-acetic acid supresses triacontanol action in triacontanol induced glycolipid accumulation.

V.E. Triacontanol induced increase in dry weight is due to enhanced photosynthesis and accumulation of photosynthate. Whether increased photosynthesis is related to increased level of MGDG?

V.F. Effects of TRIA and 9-β-L(+) adenosine on glycolipid composition of cotton are similar.

V.G. The protoplasts isolated from cucumber (Cucumis sativus) fruit offers an excellent natural membrane system for studying membrane dynamics.

V.H. Increase in membrane fluidity of the protoplast membrane is evident from the determination of membrane microviscosity by two different methods.

V.I. Increase in the protoplast membrane fluidity is also demonstrated by probing the membrane with two different fluorophores.

V.J. Decrease in the microviscosity of the membranes is reflected by decreased fluorescence lifetime, decreased rotational correlation time and decreased fluorescence anisotropy of the probe incorporated into the membrane.

V.K. Altered membrane functions induced by triacontanol might be due to the altered membrane microviscosity.
V.L. Action of ABA on the membrane appears to be confined to a specific spatial facet in the membrane.

V.M. Change in fatty acid composition of membrane lipids appears to be a general consequence in plants subjected to external environmental factors and growth regulator treatment.

V.N. The change in fatty acid composition by the growth regulators is not the only reason for change in microviscosity of the membrane: an evidence from fatty acid analysis of protoplasts.

V.O. Fluidity of the lipid bilayer depends on both fatty acid composition and interacting substances.

V.P. The change in membrane microviscosity appears to be due to change in both lipid:lipid and lipid:protein interactions.

V.Q. Future prospects for investigations on the physicochemical properties of plant membrane lipids.

VI REFERENCES