CONTENTS

I. Introduction
 1.1 Selection of the probes and solvents 7
 1.2 Organization of the thesis 9

II. Theoretical background and measurement techniques
 2.1 Stokes-Einstein-Debye hydrodynamic theory 13
 2.2 Quasihydrodynamic theories
 2.2.1 Geirer and Wirtz model
 2.2.2 Dote, Kivelson and Schwartz model
 2.3 Dielectric friction theories
 2.3.1 Nee and Zwanzig model
 2.3.2 van der Zwan and Hynes model
 2.3.3 Alavi and Waldeck model
 2.4 Theory of Dipole moment - Stokes shift and Lippert’s equation 25
 2.5 Principles of fluorescence
 2.5.1 Fluorescence anisotropy
 2.5.2 Polarization and anisotropy
 2.5.3 L-Format or Single-Channel Method
 2.6 Measurement Techniques
 2.6.1 UV-Vis Absorption Spectrophotometer
 2.6.2 Fluorescence Spectrophotometer
 2.6.3 Time Correlated Single Photon Counting system
 2.6.4 Refractive Index measurement
 2.7 Literature Review 41

III. Dipole moment and lifetime of coumarin dyes in binary solvent mixtures
 3.1 Introduction 62
 3.2 Theoretical background 65
 3.3 Materials and methods 67
 3.4 Results and discussion 68

IV. Rotational dynamics of coumarins in polar solvents
 4.1 Introduction 79
 4.2 Materials and methods 81
 4.3 Results and discussion 83
V. Rotational dynamics of coumarins in binary solvent mixture

5.1 Introduction 96
5.2 Materials and methods 99
5.3 Results and discussion 101

VI. Conclusions 115

---O---