Chapter 4

Generalization of safe 1 - secure sets

The number of guards required to defend an attack is much less in the case of eternal m - security compared to eternal 1 - security in graphs. Same is true for safe eternal version of domination. This motivates to define safe eternal m - security in graphs. In this chapter we initiate a study on safe eternal m - security in graphs and give bounds for safe eternal m - security number. We also find the number for some classes of graphs and give characterizations in certain cases. The safe eternal m - secure set is a safe eternal secure set such that more than one guard can move in response to an attack. The number of vertices in a smallest safe eternal m - secure set of a graph G is the safe eternal m - security number and denoted by $\sigma_{sm}(G)$. It is a simple observation that, $\sigma_{sm}(K_n) = 1$. Next result is an immediate consequence of the observation that every safe eternal m - secure set is an eternal m - secure set.
Theorem 4.0.1. For any graph G,

$$\sigma_m(G) \leq \sigma_{sm}(G).$$

Replacing the safe eternal 1 - secure sets in the definition of α_1 - graph and β_1 - graph, by safe eternal m - secure sets we define their counterparts α_m - graph and β_m - graph in safe eternal m - domination.

A graph G is an α_m - graph if it has no safe eternal m - secure set. Every safe eternal 1 - secure set of a graph is a safe eternal m - secure set of the graph. If a graph has no safe eternal m - secure set, then it has no safe eternal 1 - secure set. A graph is a β_m - graph if it has at least one safe eternal m - secure set. Let S be a safe eternal 1 - secure set of the graph G. This set is a safe eternal m - secure set with $m = 1$.

The above ideas together give the following result.

Theorem 4.0.2. 1. All α_m - graphs are α_1 - graphs.

2. All β_1 - graphs are β_m - graphs.

Proof. (1) : Let G be an α_m - graph. It has no safe eternal m - secure set. So G cannot have any safe eternal 1 - secure set. Thus G is an α_1 - graph.

(2) : Let G be a β_1 - graph. The graph has at least one safe eternal 1 - secure set. The same set is a safe eternal m - secure set (with $m = 1$). So G is a β_m - graph. \qed

Next we proceed to find $\sigma_{sm}(G)$ for some familiar classes of graphs.

Theorem 4.0.3. 1. $\sigma_{sm}(P_n) = \theta_s(P_n) = \lceil \frac{n}{2} \rceil$.

2. $\sigma_{sm}(C_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil$.
CHAPTER 4. GENERALIZATION OF SAFE 1 - SECURE SETS

Proof. 1. Let the vertices of the path be labeled v_1, v_2, \ldots, v_n from one end. Place the guards at $v_2, v_4, \ldots, v_{(n-1)}$ if n is odd and $v_2, v_4, \ldots, v_{(n-2)}$ and at $v_{(n-1)}$ if n is even. This arrangement gives a safe eternal m-secure set and it requires $\lceil \frac{n}{2} \rceil$ guards.

2. If $n = 3$, one guard standing at any one vertex is a safe eternal m-security set. Next when $n > 3$, guards can be arranged at the minimum dominating set. This arrangement is an eternal m-secure set. Always we can have an arrangement in which the guards stand at v_1 and v_4 leaving v_2 and v_3 vacant. Hence any minimum eternal m-secure set is a safe eternal m-secure set.

\[\square \]

Theorem 4.0.4. If the graph G is a complete multipartite graph, then $\sigma_{sm}(G) = 2$.

Proof. Let $G = K_{r_1,r_2,\ldots,r_n}$ with partition of vertex set as V_1, V_2, \ldots, V_n. Place a guard at $u \in V_i$ and another guard at $v \in V_j$. All vertices in $V_i \cup V_j$ are safe vertices. If the enemy attacks at $x \in V_i$ where $x \neq u$, the guard standing at v moves to defend it. Simultaneously, the guard at u can move to any other subset V_k. Clearly this is the minimum possible case, because single guard cannot keep all vertices.

\[\square \]

Let Γ be a group and $C \subseteq \Gamma - \{e\}$, where e is the identity element. The Cayley graph $G = (\Gamma, C)$ is a graph with the vertex set represented by the elements of Γ and the elements f and g of the vertex set are connected if and only if there exists $h \in C$, such that $f = gh$. If we take $\Gamma = \mathbb{Z}_n$, we get a special subclass of cayley graphs called circulant graphs. Wayne Goddard et al. [13] have proved that if G is a Cayley graph, then $\sigma_m(G) = \gamma(G)$. The
following theorem can be proved in a similar way for circulant graphs and it is expected that it is true for the general class of Cayley graphs.

Theorem 4.0.5. If the circulant graph G has an initial safe m-secure set S, then it is a β_m-graph and $\sigma_{sm}(G) = |S|$.

Proof. Let Z_n be the underlying group and C be the subset of Z_n used to define the Circulant graph G. Suppose that S is an initial safe m-secure set. If there is an attack at the safe vertex u, then a guard from $v \in S \cap N(u)$ defends it. It is possible if and only if there exists $d \in C$ such that $u = dv$. Then dS is another safe eternal m-secure set and $|S| = |dS|$. □

The set $D \subseteq V$ is a total dominating set of a graph G, if and only if every vertex in the graph is adjacent to at least one vertex in D. Let D be a total dominating set of the graph G and $\langle D \rangle$ be the induced subgraph of D. We use $C(D)$ to denote the number of components of $\langle D \rangle$. Also let $C'(D)$ denote the total number of components of $\langle D \rangle$ such that there exists at least one vertex say $x \notin D$ and $|N(x) \cap D| = 1$. We shall call the vertex x, a safe leaf. Clearly $C'(D) \leq C(D)$ for each D.

Example 4.0.6. Consider the graph given below. The set $D = \{v_3, v_4, v_7, v_8\}$ is a total dominating set. The induced subgraph $\langle D \rangle$ contains two paths (v_3, v_4) and (v_7, v_8). But $\langle D' \rangle$ contains only one path (v_3, v_4). So $|D'| \leq |D|$.
Lemma 4.0.7. If the graph G has a total dominating set D and there exist two vertices $u_1, u_2 \in (V(G) - D)$ such that $|N[u_i] \cap D| = 1$ for $i = 1$ and 2, then $\sigma_{sm}(G) \leq |D| + C'(D) \leq |D| + C(D)$.

Proof. Consider a total dominating set D having the given properties. Let the guards be placed at each of the vertices in D. Consider a component K of $\langle D \rangle$. If none of the vertices adjacent to $V(K)$ is a safe leaf, the enemy will not attack these vertices. So suppose that some vertices adjacent to $V(K)$ are safe leaves. Then provide one additional guard at a vertex $y \notin V(K)$, but adjacent to a vertex in $V(K)$. In response to an attack at a safe leaf a guard standing near the attacked vertex can move. Simultaneously all remaining vertices in the component can rearrange their places to accommodate the guard standing at y. This can be successfully repeated to defend any number of attacks at the safe leaves of the component. Thus for the component K having safe leaves, exactly $|V(K)| + 1$ soldiers are required. Next take the whole components together. The arrangements of guards at the vertices in D is a safe m - secure set. Hence we get the result. \hfill \Box

Now we define $C'(G) = \min\{|D| + |C'(D)|\}$: such that D is a total
dominating set of G having at least two safe leaves} and $C(G) = \min\{|D| + |C(D)| : \text{such that } D \text{ is a total dominating set of } G \text{ having at least two safe leaves}|$.

Lemma 4.0.8. For the graph G, $C'(G) \leq C(G)$.

Proof. Consider the total dominating set D such that $(|D| + |C(D)|) = C(G)$. Then $C'(G) \leq (|D| + |C'(D)|) \leq (|D| + |C(D)|) = C(G)$.

Theorem 4.0.9. For any graph G, $\sigma_{sm}(G) \leq C'(G) \leq C(G)$.

Proof. From the given graph, select a subset D of $V(G)$ such that there exist two vertices $x_1, x_2 \notin D$ and $|N(x_i) \cap D| = 1$ for $i = 1$ and 2. Then following the steps of Lemma 4.0.7, we can show that, D is a safe eternal m-secure set. Using all the possible total dominating sets and the Lemma 4.0.8, we get the result.

4.1 Conclusion and future directions

In this chapter, we have seen a general version of safe eternal 1 - secure sets in graphs, named safe eternal m - secure set. Minimum cardinality of all existing safe eternal m - secure sets of G is also defined ($\sigma_{sm}(G)$) and this number is found for paths, cycles and multi-partite graphs etc. Safe eternal m - security number of many other classes of graphs has to be determined. Spider graphs, Petersen family of graphs, n - dimensional cubes etc. are some examples. Whether all trees have a safe eternal m - secure set is unknown. If it exists, determining $\sigma_{sm}(T)$, where T is a tree is another possible area.