FIGURES

Chapter 1:

1.1 Jablonski diagram illustrating the creation and fate of a molecular excited singlet state, including absorption, fluorescence, phosphorescence, internal conversion, intersystem crossing, and vibrational relaxation 8

1.2 Jablonski diagram with collisional quenching and resonance energy transfer (RET) of a fluorophore in solution. 11

1.3 Static quenching mechanism. 14

1.4 Deviation of Stern-Volmer plot from linearity 16

1.5 Different type of coating materials, substrate, and interactions in layer by layer technology 20

1.6 Classification of thin film deposition techniques showing the position of layer by layer method. 21

1.7 Schematic representation of LbL assembly by dip coating. 23

1.8 Schematic representation of LbL assembly by spray coating. 23

1.9 Schematic representation of spin coater with coating solution on it. 24

1.10 Schematic representation showing dewetting of thin films to form multilayer. 25

1.11 Applications of layer by layer technology. 26

1.12 Polyelectrolytes normally employed for the multilayer formation and their structures. 28

Chapter 2:

2.1 Crystal structure of OVA generated using Python molecular viewer from the Protein Data Bank. 56
2.2 Crystal structure of LYZ generated using Python molecular viewer from the Protein Data Bank.

2.3 Crystal structure of CYT C generated using Python molecular viewer from the Protein Data Bank.

2.4 Crystal structure of HSA generated using Python molecular viewer from the Protein Data Bank.

2.5 Structure of the polyelectrolytes used for multilayer build up.

2.6 Schematic sketch showing the preparation of multilayer and the ultrafiltration of protein onto the multilayer.

2.7 Perkin Elmer Spectrum 400 ATR-FTIR Spectrometer.

2.8 JEOL JSM-6390 Scanning Electron Microscope.

2.9 Multi Mode Atomic Force Microscopy.

2.10 UV-1700 Shimadzu Spectrophotometer.

2.11 Perkin Elmer LS-55 Spectrofluorometer.

2.12 Schematic representation of the experimental setup for fluorescence measurements.

2.13 Horiba FluroMax Jobin Yvon spectrometer.

Chapter 3

3.1 FTIR of supor membrane and CHI/PSS bilayers (0, 3, 5 and 6) at pH 1.72.

3.2 SEM images of ovalbumin immobilized six bilayered CHI/PSS film deposited on polyethersulfone membrane at four selected pHs (pH 3, pH4. 5, pH 8.8, and pH 10.6).

3.4 SEM images of (A): bare membrane, (B): OVA immobilized...
6 bl membrane, (C): 7 bl membrane, (D): 8 bl membrane and (E): 9 bl membrane at pH 4.5. [OVA] = 0.25 mg/ml.

3.5 AFM image of (A): bare membrane, (B): 6 bilayered CHI/PSS membrane, and (C): OVA immobilized six bilayered CHI/PSS composite multilayered membrane at pH 4.5. [OVA] = 0.25 mg/ml.

3.6 Schematic sketch showing the layer dependent immobilization of OVA onto CHI/PSS nanolayer.

3.7 The emission spectrum of bare, CHI/PSS, OVA-CHI/PSS membranes, OVA solution, and PSS solution after excitation at 290 nm.

3.8 Normalized excitation (λ_{max} 290 nm) and emission spectrum of ovalbumin in different conditions. a), (b) and (c) represents the excitation spectrum of ovalbumin solution at pH 4.5, ovalbumin immobilized CHI/PSS nanolayer at pH 4.5 and CHI/PSS nanolayer respectively. (a’) and (b’) represents the emission spectra (λ_{exc} = 290 nm) of ovalbumin solution and OVA-CHI/PSS respectively. [OVA] = 0.25 mg/ml.

3.9 Schematic representation of the thermodynamical aspect of the mechanism of bio-macromolecule immobilization onto membranes via an intermediate adsorbed nanolayer.

3.10 Excitation (λ_{max} 290 nm) and emission (λ_{em} 340nm) spectrum of OVA solution as a function of pH. A, B, C represents the excitation spectrum of OVA solution at pH 3.0, pH 4.5 and pH 10.6 respectively, A’, B’, C’ is the corresponding emission intensity.

3.11 Time dependant ATR-FTIR spectra of water region in polyethersulfone membrane (bare membrane) as a function of time

3.12 Time dependant ATR-FTIR spectra of water region for 6bl OVA-CHI/PSS membranes.

3.13 Curve fitted –OH region in (a) 6 bl CHI/PSS, (b) OVA
immobilized 6 bl CHI/PSS multilayers. Second derivative spectra with peak pick are shown.

3.14 Curve fitted amide I region in (a: pure OVA, (b): OVA immobilized 6 bl CHI/PSS multilayers. Second derivative spectra with peak pick are shown.

3.15 (a): Fluorescence emission spectrum and the corresponding Stern-Volmer plot of OVA-CHI/PSS as a function of concentration of hydrogen peroxide at pH 4.5 \([H_2O_2] = 10^{-14}\) M. (b): Fluorescence emission spectrum and the corresponding Stern-Volmer plot of ovalbumin solution (0.25 mg/ml) as a function of hydrogen peroxide at pH 4.5 \([H_2O_2] = 10^{-12}\) M. (c) Fluorescence emission spectrum and the corresponding Stern-Volmer plot of OVA-CHI/PSS as a function of concentration of hydrogen peroxide at pH 4.5 \([H_2O_2] = 10^{-12}\) M.

3.16 Decay profile of the fluorescence of (A): OVA solution and (B): 6bl-OVA-CHI/PSS in the presence of varying \(H_2O_2\) concentrations.

3.17 Absorption spectra of OVA solution-H\(_2\)O\(_2\) system at pH 4.5. \([OVA] = (a) 0.025; \ (b) 0.1 \ and \ (c) 0.25 \ mg/ml), H\(_2\)O\(_2\) concentration in the range 10\(^{-12}\) mol L\(^{-1}\).

3.18 FTIR spectra: (A): FTIR spectrum of OVA alone, (B): FTIR spectrum of OVA in presence of \(H_2O_2\).

3.19 Curve fitted amide I region for OVA after interaction with \(H_2O_2\). Second derivative spectra with peak pick are shown.

3.20 Synchronous fluorescence emission spectrum of OVA immobilized CHI/PSS nanolayer in presence of different concentrations.

3.21 Emission spectra showing reversibility of OVA-CHI/PSS bilayer

Chapter 4

4.1 Fluorescence quenching pattern of proteins (A): Lysozyme
4.2 Fluorescence quenching of lysozyme in the presence of higher concentration of HgCl$_2$. $[\text{HgCl}_2] = 0-10 \times 10^{-3}$ M.

4.3 Fluorescence emission spectra of OVA in different pHs.

4.4 Fluorescence spectra of OVA-HgCl$_2$ system under different pH conditions: (A) 7.4, (B) 4.5, and (C) 2.2; $[\text{OVA}] = 0.1 \text{mg/ml}; [\text{HgCl}_2] = 0-6.25 \mu$M.

4.6 Absorption spectrum of OVA-HgCl$_2$ system at (A): pH 7.4; (B): pH 4.5 and (C): pH 2.2.

4.7 Plot of log $[(F_0-F)/F]$ vs log [ligand] for OVA-ligand at different pH (A): 7.4; (B): 4.5; (C): 2.2. The regions (I-III) represent the various binding stages of HgCl$_2$ to OVA. The insets show a representative plot corresponding to region II.

4.8 Red-edge excitation shift (REES) of intrinsic tryptophans observed in (A) native (at pH 7.4) (B) Isoelectric condition (at pH 4.5) and (C) molten-globule-form (at pH 2.2) of OVA as a function of excitation wavelengths, viz., 280, 290, 295, and 305 nm.

4.9 Influence of pH on the profiles of the FTIR spectrum of free OVA. $[\text{OVA}] = 10^{-5}$ M, at 25 °C; pH was 7.4, 4.5, and 2.2, respectively.

4.10 FTIR spectra of OVA in the presence of HgCl$_2$ (A): OVA 7.4, (B): OVA 4.5, and (C): OVA 2.2.

4.11 The CD spectra for OVA recorded at pH 7.4 (solid line) and pH 2.2 (dashed line).

4.12 Representative CD spectra of OVA both in the absence and in the presence of HgCl$_2$ of varying concentrations. Inset: zoom at the two OVA characteristic negative peaks.

4.13 The overlap of the absorption spectra of HgCl$_2$ and the
fluorescence spectra of OVA at pH 7.4.

4.14 (A): The time-resolved fluorescence decay of OVA–HgCl$_2$ systems at pH 7.4, (B): Plot of log $[(\tau_0-\tau)/\tau]$ against log [HgCl$_2$] for OVA-ligand at pH 7.4.

4.15 (A): The time-resolved fluorescence decay of OVA–HgCl$_2$ systems at pH 4.5, (B): Plot of log $[(\tau_0-\tau)/\tau]$ against log [HgCl$_2$] for OVA-ligand at pH 4.5.

4.16 (A): The time-resolved fluorescence decay of OVA–HgCl$_2$ systems at pH 2.2, (B): Plot of log $[(\tau_0-\tau)/\tau]$ against log [HgCl$_2$] for OVA-ligand at pH 2.2.

4.17 Comparison of variation in the mean life time of OVA (at pH 7.4, pH 4.5, and pH 2.2, respectively) against the varying concentrations of HgCl$_2$.

4.18 Synchronous fluorescence spectra of OVA with various amounts of HgCl$_2$ when $\Delta\lambda = 60$ nm and 15 nm in different pHs: (A) 7.4, (B) 4.5 (C) 2.2.

Chapter 5

5.1 Fluorescence emission spectra of OVA–CHI/PSS as a function of the concentration of CYT C at pH 4.5; [CYT C] = (0-8 μM); [OVA] = 0.25 mg/ml.

5.2 Fluorescence quenching spectra of OVA in the presence of varying concentration of CYT C under different pH conditions. (A): OVA 4.5, (B): OVA 7.4; [OVA] = 0.1mg/ml; [CYT C] =0-20 μM; λ_{exc} 295 nm; $T = 298$ K.

5.3 Stern–Volmer plot of (A): OVA–CHI/PSS (B): OVA at pH 7.4 (C): OVA at pH 4.5, as a function of CYT C.

5.4 Plot of log [(F0-F)/F] vs log [ligand] for (A): OVA–CHI/PSS (B): OVA at pH 7.4 (C): OVA at pH 4.5, as a function of CYT C.

5.5 Overlap spectra of normalized absorbance of CYT C and normalized fluorescence intensity of (A): OVA immobilized in CHI/PSS multilayer; (B): OVA at pH 7.4; (C): OVA at
5.6 The time-resolved fluorescence decay of (A): OVA–CHI/PSS (B): OVA at pH = 7.4; (C): OVA at pH = 4.5.

5.7 Synchronous fluorescence spectra of proteins in the presence of different concentrations of CYT C; [OVA] = 0.1 mg/ml; [CYT C] = 0 to 20 μM at 298 K; A1=∆λ: 60 nm; A2=Δλ: 15 nm, OVA pH = 7.4; B1=Δλ: 60 nm; B2=Δλ: 15 nm, OVA pH = 4

5.8 Fluorescence emission spectrum of LYZ at two pHs; [LYZ] = 0.1mg/ml.

5.9 Fluorescence quenching spectra of LYZ in the presence of varying concentration of CYT C under different pH conditions. (A): LYZ 7.4, (B): LYZ 10.6; [LYZ] = 0.1mg/ml; [CYT C] = 0-20 μM; λ_{exc} 295 nm; T = 298 K.

5.10 Stern-Volmer plots of the (A) LYZ at pH 7.4 and (B) LYZ at pH 10.6 against CYT C.

5.11 Plot of log [(F₀-F)/F] vs log [ligand] for (A): LYZ at pH 7.4; and (B): LYZ at pH 10.6 against CYT C.

5.12 Overlap spectra of normalized absorbance of CYT C and normalized fluorescence intensity of A: LYZ at pH 7.4; B: LYZ at pH 10.6.

5.13 The time-resolved fluorescence decay of LYZ–CYT C systems at different pH. (A): LYZ at pH = 7.4; (B): LYZ at pH = 10.6; [CYT C] = 0-20 μM.

5.14 Synchronous fluorescence spectra of proteins in the presence of different concentrations of CYT C; [LYZ] = 0.1 mg/ml; [CYT C] = 0 to 20 μM at 298 K; A1=Δλ: 60 nm; A2=Δλ: 15 nm of LYZ at pH = 7.4; B1=Δλ: 60 nm; B2=Δλ: 15 nm of LYZ at pH = 10.6.