LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. 2.1</th>
<th>Ways of reproduction for producing the offsprings by plants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.2</td>
<td>Depiction of different stages of microsporogenesis and key genes involved in regulating progression of gametogenesis development. Red coloured letters indicates key genes operating at particular stage while green letters indicates the promoters identified/characterized with maximal expression at particular stage.</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Stages of female gametophyte development and seed formation. A) Stages of microsporogenesis and microgametogenesis; B) double fertilization leading to seed formation. Red colour letters are genes identified by several authors to regulate particular stage of development. (Pictures of double fertilization adopted from http://orangegroupbiology.blogspot.in/2012/06/bow-double-fertilization.html)</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Different methods and approaches applied for gene/promoter identification and manipulation</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Diagrammatic representation of core promoter elements required for gene transcription. BREu= upstream TFIIB-recognition element; BREd= downstream TFIIB-recognition element; TFIIB= Transcription factor II B; TBP= the TATA-binding protein; TAF= TBP-associated factors; DCE= Downstream core element; MTE=Motif ten element; DPE= downstream promoter element; Inr= The initiator. Numbers indicate respective position of promoter element from Transcription start site and letters indicate the conserved domains for respective elements.</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Representative diagrams of T-DNA of vectors used in this study. A) pBIN-mGFP, B) pORE R2 and C) pCAMBIA-1302 vectors. (Courtesy: pBin-mGFP-Tang et al. 2005; pORE R2- Coutu et al. 2007 and pCAMBIA-1302-Li et al. 2012).</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Diagrammatic representation of promoterless T-DNA construct, with sGFP as reporter gene and kanamycin as selectable marker, used for generation of promoter trap population</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>Depiction of various steps of genome walking for localization of T-DNA insertion. PP, primary primer; NP, nested primer.</td>
</tr>
<tr>
<td>Fig. 3.4</td>
<td>Depiction of preparation of reporter expression construct in pORE R2 binary expression vector in which the reporter gene expression is under control of fragments cloned at 5’upstream to it</td>
</tr>
<tr>
<td>Fig. 3.5</td>
<td>Diagrammatic representation of At5g26290 gene expression construct in pCAMBIA1302</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Selection for putative transformants in Arabidopsis growing on MS agar plates supplemented with kanamycin (50 µg/ml)</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>PCR confirmation of presence of GFP reporter gene in putative transformed plants, M= 500bp ladder, lane 1= GFP +ve line, lane 2= WT, lanes 3-6 Transgenic lines and lane 7= -ve control</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>Laser scanning Confocal microscopy analysis of different promoter</td>
</tr>
</tbody>
</table>
trap lines. Expression of GFP in the male gametophyte of A) GFP-104; B) GFP-670; C) GFP-785 and D) GFP-868 promoter trap lines. Arrow head indicates the region of GFP expression in anther. The pollen of GFP-785 are deformed and collapsed as indicated with arrow heads.

Fig. 4.4 Analysis of GFP transcripts in the selected promoter trap lines by semi-quantitative RT-PCR.

Fig. 4.5 Amplification of fragments from genomic DNA of trap lines using T-DNA and adaptor gene specific and nested gene specific primers. A) GFP-104; B) GFP-670; C) GFP-785 and D) GFP-868.

Fig. 4.6 Sequences of amplified and cloned fragments from genome walk of selected promoter trap lines. The sequences highlighted in green are from T-DNA region of promoter trap constructs, in black letter are insertion flanks and rest are T-DNA flanking sequences.

Fig. 4.7 Diagramatic representation of T-DNA insertions in different promoter trap lines selected in the present study.

Fig. 4.8 Estimation of *At4g10596* gene transcripts in GFP-868 and WT plants by semiquantitative RT-PCR analysis.

Fig. 4.9 Depiction of different domains necessary for basal level promoter expression on both the strands of 461 bp fragment. A) Various cis-acting elements of the promoter sequences are highlighted in different colors on both strands. B) Diagrammatic representation of cis-acting elements identified in both orientations in the 461 bp sequence upstream to the *At4g10596* gene.

Fig. 4.10 Histochemical GUS assay of transgenic *Arabidopsis* plants showing bi-directional nature of the promoter. A and C, diagrammatic representation of the constructs prepared for expression analysis. Expression construct was prepared by cloning the upstream sequence of *At4g10596* (461 bp) in pORE-R2 reporter vector in sense and reverse orientations in between HindIII and SacI sites. B and D are the GUS expression pattern in the anthers of transgenic *Arabidopsis* plants. GUS localization was observed in mature anthers. Ba, anther; Bb and Bc, closeup view of anther sac and pollen, respectively; Da, inflorescence; Db, anther sac; Dc, closeup view of anther sac. MF and MR: M13 forward and M13 reverse primer binding sites; PENTCUP2: Tobacco cryptic constitutive promoter.

Fig. 4.11 Characterization of pollen in GFP-785 mutant and *At5g26290* gene expression pattern in wild type *Arabidopsis* plants A) Anther with shrunken and defective pollen. B) Alexander staining of anther showing viable (Pink coloured) and non-viable pollen. C) Semi-quantitative RT-PCR analysis with gene specific primers in wild type showing presence of gene transcript in mature flowers only.

Fig. 4.12 Characterization of T-DNA insertion site in GFP-785 line. Diagrammatic representation of T-DNA insertion at the genome level and confirmation of insertion location by PCR with the primers designed from corresponding T-DNA and to plant sequences flanking the T-DNA.
Fig. 4.13 Possible re-arrangements of T-DNA in GFP-785 during insertion.
A) PCR amplification of genomic DNA from GFP-785 with gene specific forward and reverse primers. B) Diagrammatic representation of T-DNA arrangement in GFP-785 mutant.

Fig. 4.14 Different cis acting elements present in the 5' upstream of At5g26290 gene. Various cis-acting elements of the promoter sequences are highlighted in different colours.

Fig. 4.15 Diagrammatic representation of the constructs prepared for expression analysis. A) Expression construct was prepared by cloning the upstream sequence of At5g26290 in pORE-R2 reporter vector in between SacI and HindIII sites. B) Diagrammatic representation of 5' deletion GUS expression constructs prepared. Presence of different cis regulatory elements was depicted on 1990 bp construct and deletion of different motifs was showed in subsequent constructs.

Fig. 4.16 Preparation of 5' promoter deletion constructs. A) PCR amplification of 5'-deletion fragments from the genomic DNA of Arabidopsis thaliana; B) restriction digestion of pGEMT Easy vector containing 5'-deletion fragments; C) pORE R2 vector digestion with HindIII and SacI enzymes for directional cloning; D) colony PCR of two single colony each for different 5'-deletion fragments cloned in pORE R2 for positive clone confirmation. M: molecular weight marker, 1-5 in A and B are amplifications and digestions, respectively, of 1900, 1544, 783, 594 and 506 bp fragments. 1-10 in D are confirmation of positive colonies (two colonies of each constructs).

Fig. 4.17 Histochemical GUS assay of transgenic Arabidopsis plants over-expressing full length and 5' deletion constructs of At5g26290 gene.

Fig. 4.18 Summary of deletion constructs showing GUS expression in different parts of flower.

Fig. 4.19 In silico functional categorization of reported pollen development pathway genes by using gene ontological classification in TAIR A) Cellular, B) molecular component based and C) based on biological activity.

Fig. 4.20 Details of conserved domains present within the 500 bp 5' upstream region of genes involved in pollen development

Fig. 4.21 Identification of conserved Motif1 in the alignment analysis of different pollen development pathway genes (66) of 5' upstream sequences from the transcription initiation site.

Fig. 4.22 Identification of conserved Motif2 in the alignment analysis of different pollen development pathway genes (66) of 5' upstream sequences from the transcription initiation site.

Fig. 4.23 Plant phenotypes of WT, Attraf1-1 (GFP-785) and Attraf1-2 (SALK_0146328) mutant lines.

Fig. 4.24 Silique phenotype of At5g26290 mutant Arabidopsis. A) Opened siliques from WT, mutant and mutant complemented with the wild type AtTRAf1 gene. Aborted seeds in the mutant are marked with asterisks. Scale bar, 500 µM. B) Phylogenetic tree of homologous
genes of traf like proteins of *Arabidopsis thaliana*. The triangle indicates the gene under study. The values on the nodes are bootstrap values indicating the robustness of grouping of proteins in the same branch.

Fig. 4.25 Phytogenetic tree generated with the known TRAF genes of plants and animals. *Arabidopsis* and rice TRAFs group separately from the human, mouse and Drosophila.

Fig. 4.26 T-DNA insertional mutant of *Arabidopsis AtTRAFL1* gene. A) Structure of *AtTRAFL1* gene and location of T-DNA insertion giving rise to *Attraf1-1, Attraf1-2* mutant alleles; B) The T-DNA insertion disrupts second MATH domain in *Attraf1-1* mutant while it disrupts first MATH domain in *Attraf1-2* mutant.

Fig. 4.27 Molecular characterization of GFP 785 and SALK_0146328. A) T-DNA insertion in 7th exon of *At5g26290*; B) T-DNA insertion site in SALK_0146328; C) Molecular characterization for T-DNA insertion in GFP 785 with primers (Fp= forward primer and Rp= reverse primer; Ho = homozygous, WT= wild type and Ht= heterozygous); D) and E) Molecular characterization for T-DNA insertion in SALK_0146328 with primers (4EF= 4th exon forward; 5ER= 5th exon reverse and STL= Salk T-DNA left primer) on six individual plants.

Fig. 4.28 Expression pattern of *At5g26290* in WT *Arabidopsis* plants. A) *in silico* analysis of expression pattern using GENEVESTIGATOR microarray database; B) expression pattern of *AT5G26290* in different tissues of WT Arabidopsis; and C), expression of *At5g26290* gene in floral parts of WT and mutant lines.

Fig. 4.29 Silique length in *Attraf1-1* and *Attraf1-2* *Arabidopsis* mutants. Data was statistically validated using DMRT where * denotes means of two samples are significantly different at \(p < 0.05 \)

Fig. 4.30 Silique length with aborted and normal seeds. A) WT; B) *Attraf1-1/+;* C) *Attraf1-1/*Attraf1-1; and D) *Attraf1-2/*Attraf1-2.

Fig. 4.31 Number of ovules per siliqule in *Attraf1-1* and *Attraf1-2* *Arabidopsis* mutant lines. Data was statistically validated using DMRT where * denotes means of two samples are significantly different at \(p < 0.001 \).

Fig. 4.32 Fertility of *Attraf1-1* and *Attraf1-2* *Arabidopsis* mutants lines. Data was statistically validated using DMRT where * denotes means of two samples are significantly different at \(p < 0.001 \).

Fig. 4.33 DIC image of whole mount mature anthers from *Attraf1-1* and *Attraf1-2* *Arabidopsis* mutant lines. Red arrow head indicates the abnormal pollens.

Fig. 4.34 Alexander’s staining of pollens of *Attraf* mutant lines. The pink stained pollens are viable and differently colored stained pollens are non-viable. In set are enlarged views of pollen. Arrow heads indicates the non-viable pollen.

Fig. 4.35 DIC image of whole mount siliqules of WT and *Attraf* mutant lines stained with aniline blue. The non-viable pollens were unable to germinate on the stigmatic surface. The aniline blue stained tissues...
fluoresces and the pollen tube growth throughout the gynoecium is visible.

Fig. 4.36 DAPI analysis of the WT and and Attraf1-1 and Attraf1-2 Arabidopsis mutant lines pollen. A) images were taken under UV-light with fluorescence microscope, B) DIC image of the pollens for the same microscopic field. Arrow heads showing the pollens which did not attained tri-nuclear stage.

Fig. 4.37 DAPI analysis of Attraf mutant lines showing pollen with variable number of nuclei. Data was statistically validated using DMRT where * denotes means of two samples are significantly different at p<0.001

Fig. 4.38 Histological analysis of buds from different anther developmental stages counter stained with toluidine blue. A) WT; B) Attraf1-1/+ and C) Attraf1-2/Attraf1-2. Where, MMC, stands for Megaspore mother cell; Td.tetrad; MP, Mature pollen and DP, deformed pollen.

Fig. 4.39 SEM analysis of pollens surface architecture of WT and Attraf1-1 and Attraf1-2 Arabidopsis mutant lines. Panel A) resolution at 50 µm and B) resolution at 10 µm.

Fig. 4.40 Percent ovules at different developmental stage in WT and Attraf1-1 and Attraf1-2 Arabidopsis mutant lines. Data was statistically validated using DMRT where * denotes means of two samples are significantly different at p<0.001

Fig. 4.41 Whole mount DIC images of ovules showing arrestation at different developmental stages at the time of anthesis A) Representative pictures of ovules considered to be at different FG developmental stage; B) Ovules in which embryosac is degenerated; B-I) ovules at FG1 stage and B-II) ovules at FG1 stage in which all the four megaspores are surviving; B-III) shows the results of crosses of Attraf1-2 with different marker lines. C-a) and C-b) results of crosses of Attraf1-2 X ET884, the normal developed ovule shows GUS expression in synergid cell (C-a), but no expression was recorded for ovules with four nuclei (C-b); Cc-f) Results of crosses of Attraf1-2XDD65, the normal developed ovule shows GFP expression in central cell (Cc-d, C-c, DIC image of the ovule and C-d, ovule observed under UV fluorescence), but no expression was recorded for ovules with four nuclei (Ce-f, C-e, DIC image of the ovule and C-f, ovule observed under UV fluorescence).

Fig. 4.42 Whole mount DIC images of ovules at post-fertilization stage revealing success of either of the two fertilization events leading to development of either endosperm or zygote. A) Ovules in which only endosperms has been developed in Attraf1 mutant of Arabidopsis; B) ovules showing only the zygote formation in mutants. * denotes endosperm nuclei. The area marked with yellow line showing development of embryo after fertilization.

Fig. 4.43 Preparation of expression construct for complementation. A) Diagramatic representation of T-DNA expression construct in
pCAMBIA; B) amplification of TRAF CDS from different tissues of WT Arabidopsis, where CauL= cauline leaf; C) positive colony of pGEMT-EASY harbouring traf CDS and pCAMBIA 1302 digested with Ncol and SpeI; D) digested fragments eluted for cloning in pCAMBIA 1302; E) confirmation of positive clones of pCAMBIA with TRAF insert by restriction digestion with Ncol and SpeI, 1=plasmid1, 2= digested plasmid1, 3= plasmid2, 4= digested plasmid2 ; F) confirmation of positive clones of pCAMBIA with TRAF insert by PCR and G) confirmation of fusion product of TRAF+GFP by PCR with FP and GFPR primers.

Fig. 4.44 Phenotype of Attraf complemented line. A) Silique length and number of ovules per silique; B) whole mount DIC image of mature anther; C) Alexander’s staining of mature anther; D) DAPI staining of pollens; E) SEM analysis and F) ovule at maturity; where a = WT and b= complemented line.

Fig. 4.45 Expression analysis of selected down-stream gametophyte development pathway genes in Attraf mutant.

Fig. 5.1 Depiction of the functional position for AtTRAFl gene in gametophyte developmental pathway based on the results of mutant phenotype and TRAF1 promoter expression as a function of GUS reporter gene.