<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure-1</td>
<td>24 h LC\textsubscript{10}-LC\textsubscript{90} values of deltamethrin for Anabas testudineus</td>
<td>51</td>
</tr>
<tr>
<td>Figure-2</td>
<td>48 h LC\textsubscript{10}-LC\textsubscript{90} values of deltamethrin for Anabas testudineus</td>
<td>51</td>
</tr>
<tr>
<td>Figure-3</td>
<td>72 h LC\textsubscript{10}-LC\textsubscript{90} values of deltamethrin for Anabas testudineus</td>
<td>52</td>
</tr>
<tr>
<td>Figure-4</td>
<td>96 h LC\textsubscript{10}-LC\textsubscript{90} values of deltamethrin for Anabas testudineus</td>
<td>52</td>
</tr>
<tr>
<td>Figure-5</td>
<td>24-96 h LC\textsubscript{50} values of deltamethrin for Anabas testudineus</td>
<td>53</td>
</tr>
<tr>
<td>Figure-6</td>
<td>24 h LC\textsubscript{10}-LC\textsubscript{90} values of permethrin for Anabas testudineus</td>
<td>53</td>
</tr>
<tr>
<td>Figure-7</td>
<td>48 h LC\textsubscript{10}-LC\textsubscript{90} values of permethrin for Anabas testudineus</td>
<td>54</td>
</tr>
<tr>
<td>Figure-8</td>
<td>72 h LC\textsubscript{10}-LC\textsubscript{90} values of permethrin for Anabas testudineus</td>
<td>54</td>
</tr>
<tr>
<td>Figure-9</td>
<td>96 h LC\textsubscript{10}-LC\textsubscript{90} values of permethrin for Anabas testudineus</td>
<td>55</td>
</tr>
<tr>
<td>Figure-10</td>
<td>24-96 h LC\textsubscript{50} values of permethrin for Anabas testudineus</td>
<td>55</td>
</tr>
<tr>
<td>Figure-11</td>
<td>Liver glycogen (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed Anabas testudineus</td>
<td>60</td>
</tr>
<tr>
<td>Figure-12</td>
<td>Percent reduction of liver glycogen in Anabas testudineus exposed to sublethal concentrations of deltamethrin from that in control</td>
<td>60</td>
</tr>
<tr>
<td>Figure-13</td>
<td>Liver protein (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed Anabas testudineus</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure-14: Percent reduction of liver protein in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control ...61

Figure-15: Muscle protein (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ...62

Figure-16: Percent reduction of muscle protein in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control ...62

Figure-17: Liver lactic acid (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ...63

Figure-18: Percent reduction of liver lactic acid in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control ...63

Figure-19: Muscle lactic acid (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ...64

Figure-20: Percent reduction of muscle lactic acid in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control ...64

Figure-21: Liver glycogen (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus* ...67

Figure-22: Percent reduction of liver glycogen in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control ...67

Figure-23: Liver protein (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus* ...68
Figure-24: Percent reduction of liver protein in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control...68

Figure-25: Muscle protein (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*..69

Figure-26: Percent reduction of muscle protein in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control...69

Figure-27: Liver lactic acid (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*..70

Figure-28: Percent reduction of liver lactic acid in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control...70

Figure-29: Muscle lactic acid (mg/100 mg fresh tissue; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*..71

Figure-30: Percent reduction of muscle lactic acid in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control...71

Figure-31: Liver SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...75

Figure-32: Percent reduction of liver SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control...75

Figure-33: Muscle SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...76
Figure-34: Percent reduction of muscle SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 76

Figure-35: Brain SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ... 77

Figure-36: Percent reduction of brain SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 77

Figure-37: Heart SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ... 78

Figure-38: Percent reduction of heart SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 78

Figure-39: Gill SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ... 79

Figure-40: Percent reduction of gill SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 79

Figure-41: Kidney SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus* ... 80

Figure-42: Percent reduction of kidney SDH in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 80

Figure-43: Liver SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus* ... 81
Figure-44: Percent reduction of liver SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control……………………………………………………………81

Figure-45: Muscle SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*……………………………………………………………82

Figure-46: Percent reduction of muscle SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control……………………………………………………………82

Figure-47: Brain SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*……………………………………………………………83

Figure-48: Percent reduction of brain SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control……………………………………………………………83

Figure-49: Heart SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*……………………………………………………………84

Figure-50: Percent reduction of heart SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control……………………………………………………………84

Figure-51: Gill SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*……………………………………………………………85

Figure-52: Percent reduction of gill SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control……………………………………………………………85

Figure-53: Kidney SDH (mg formazan formed/min/mg wet tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*……………………………………………………………86
Figure-54: Percent reduction of kidney SDH in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control...86

Figure-55: Liver AST (µg pyruvate/min/mg fresh tissue; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*..90

Figure-56: Percent change of liver AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control...90

Figure-57: Muscle AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...91

Figure-58: Percent change of muscle AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control...91

Figure-59: Brain AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...92

Figure-60: Percent change of brain AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control...92

Figure-61: Heart AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...93

Figure-62: Percent change of heart AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control...93

Figure-63: Gill AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*...94
Figure-64: Percent change of gill AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ...94

Figure-65: Kidney AST (\(\mu g\) pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ...95

Figure-66: Percent change of kidney AST in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ...95

Figure-67: Liver AST (\(\mu g\) pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...96

Figure-68: Percent change of liver AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...96

Figure-69: Muscle AST (\(\mu g\) pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...97

Figure-70: Percent change of muscle AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...97

Figure-71: Brain AST (\(\mu g\) pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...98

Figure-72: Percent change of brain AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...98

Figure-73: Heart AST (\(\mu g\) pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...99
Figure-74: Percent change of heart AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...99

Figure-75: Gill AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...100

Figure-76: Percent change of gill AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...100

Figure-77: Kidney AST (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ...101

Figure-78: Percent change of kidney AST in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ...101

Figure-79: Liver ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ...105

Figure-80: Percent change of liver ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ...105

Figure-81: Muscle ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ...106

Figure-82: Percent change of muscle ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ...106

Figure-83: Brain ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ...107
Figure-84: Percent change of brain ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 107

Figure-85: Heart ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ... 108

Figure-86: Percent change of heart ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 108

Figure-87: Gill ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ... 109

Figure-88: Percent change of gill ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 109

Figure-89: Kidney ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal deltamethrin-exposed *Anabas testudineus*. ... 110

Figure-90: Percent change of kidney ALT in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin from that in control. ... 110

Figure-91: Liver ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 111

Figure-92: Percent change of liver ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 111

Figure-93: Muscle ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 112
Figure-94: Percent change of muscle ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 112

Figure-95: Brain ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 113

Figure-96: Percent change of brain ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 113

Figure-97: Heart ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 114

Figure-98: Percent change of heart ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 114

Figure-99: Gill ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 115

Figure-100: Percent change of gill ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 115

Figure-101: Kidney ALT (µg pyruvate/min/mg fresh tissue weight; mean±S.E.) in control and sublethal permethrin-exposed *Anabas testudineus*. ... 116

Figure-102: Percent change of kidney ALT in *Anabas testudineus* exposed to sublethal concentrations of permethrin from that in control. ... 116

Figure-103 a: Gill architecture of control *Anabas testudineus* showing primary and secondary lamellae. ... 122
Figure-103 b: Gill architecture of control *Anabas testudineus* showing primary and secondary lamellae at higher magnification and well-defined interlamellar space between secondary lamellae..122

Figure-103 c: Gill architecture of control *Anabas testudineus* showing microridges and mucous gland opening...123

Figure-104 a: Gill of *A. testudineus* exposed to 0.035 mg l\(^{-1}\) deltamethrin (DM) showing fusion of primary lamellae and clumping of primary lamellae..123

Figure-104 b: Gill of *A. testudineus* exposed to 0.035 mg l\(^{-1}\) DM showing deep erosive lesion on lamellar surface, sloughing of lamellar surface and erythrocyte extrusions.......................124

Figure-105 a: Gill of *Anabas testudineus* exposed to 0.007 mg l\(^{-1}\) DM showing clumping of primary lamellae...124

Figure-105 b: Gill of *Anabas testudineus* exposed to 0.007 mg l\(^{-1}\) DM showing erosive lesion at lamellar tip and reduced interlamellar space between secondary lamellae..............................125

Figure-105 c: Gill of *Anabas testudineus* exposed to 0.007 mg l\(^{-1}\) DM showing loss of microridge structure, near-obliteration of mucous gland opening and erythrocyte extrusion...125

Figure-105 d: Gill exposed to 0.007 mg l\(^{-1}\) DM after 1 week in control condition showing damaged primary lamellae and clumping of lamellar tips.................................126

Figure-105 e: Gill exposed to 0.007 mg l\(^{-1}\) DM after 1 week in control condition showing mucous gland opening and damaged microridge structure..126

xi
Figure-106 a: Gill exposed to 0.0007 mg l\(^{-1}\) DM showing erosive lesions on secondary lamella and clumping of primary lamellae. ... 127

Figure-106 b: Gill exposed to 0.0007 mg l\(^{-1}\) DM showing lesions on microridges and lesions on mucous gland openings, ... 127

Figure-106 c: Gill exposed to 0.0007 mg l\(^{-1}\) DM after 1 week in control condition showing clumping of lamellar tips, ... 128

Figure-106 d: Gill exposed to 0.0007 mg l\(^{-1}\) DM after 1 week in control condition showing thick mucous film over microridges and deterioration of microridge structure, .. 128

Figure-107 a: Gill exposed to 0.93 mg l\(^{-1}\) Permethrin (PM) showing damages on primary lamella, oedema of primary and secondary lamellae and reduction of interlamellar space between secondary lamellae. ... 129

Figure-107 b: Gill exposed to 0.93 mg l\(^{-1}\) PM showing oedema of secondary lamella, erythrocyte extrusion and fine linear rupture on lamellar surface. ... 129

Figure-108 a: Gill exposed to 0.093 mg l\(^{-1}\) PM showing clumping of primary lamellae and erosive lesions on primary and secondary lamellae, ... 130

Figure-108 b: Gill exposed to 0.093 mg l\(^{-1}\) PM showing erosive lesion on primary and secondary lamellae, ... 130

Figure-108 c: Gill exposed to 0.093 mg l\(^{-1}\) PM showing oedema of microridged surface and near obliteration of mucous gland opening, ... 131
Figure-108 d: Gill exposed to 0.093 mg l$^{-1}$ PM after 1 week in control condition showing clumping of primary lamellae and erosive lesions on primary and secondary lamellae.131

Figure-108 e: Gill exposed to 0.093 mg l$^{-1}$ PM after 1 week in control condition showing partially restored microridge structure and ill-defined mucous gland opening.132

Figure-109 a: Gill exposed to 0.0093 mg l$^{-1}$ PM showing clumping and oedema of primary lamellae. ..132

Figure-109 b: Gill exposed to 0.0093 mg l$^{-1}$ PM showing mucous film over microridges and distortion of microridges. ..133

Figure-109 c: Gill exposed to 0.0093 mg l$^{-1}$ PM after 1 week in control condition showing oedema of secondary lamellae, reduction of interlamellar space between secondary lamellae and erythrocyte extrusions. ..133

Figure-109 d: Gill exposed to 0.0093 mg l$^{-1}$ PM after 1 week in control condition showing mucous on microridged surface and damaged microridges. ..134

Figure-110 a: Scale architecture of control *Anabas testudineus* showing focus, radii and circuli ..138

Figure-110 b: Scale architecture of control *Anabas testudineus* showing circuli and lepidonts at higher magnification and intercircular space. ..138

Figure-110 c: Scale architecture of control *Anabas testudineus* circuli arrangement in rows and normal radii pattern. ..139
Figure-111 a: Scale of *Anabas testudineus* exposed to 0.035 mg l$^{-1}$ deltamethrin (DM) showing fusion of circuli in same row and severe damage of circuli. ... 139

Figure-111 b: Scale of *Anabas testudineus* exposed to 0.035 mg l$^{-1}$ DM showing severe damage of circuli and fusion of circuli in different row disrupting normal radii pattern. 140

Figure-111 c: Scale of *Anabas testudineus* exposed to 0.035 mg l$^{-1}$ deltamethrin (DM) showing total disappearance of lepidonts and severe damage of circuli. ... 140

Figure-112 a: Scale of *Anabas testudineus* exposed to 0.007 mg l$^{-1}$ DM showing fusion of circuli in different row disrupting normal radii. ... 141

Figure-112 b: Scale of *Anabas testudineus* exposed to 0.007 mg l$^{-1}$ DM showing severe damage of circuli, deformed pattern of circuli. ... 141

Figure-112 c: Scale of *Anabas testudineus* exposed to 0.007 mg l$^{-1}$ DM showing severe breakage of lepidonts and circuli. ... 142

Figure-113 a: Scale exposed to 0.007 mg l$^{-1}$ DM after 1 week in control condition showing normal circuli and radii pattern. .. 142

Figure-113 b: Scale exposed to 0.007 mg l$^{-1}$ DM after 1 week in control condition showing breakage of lepidonts and damage of circuli. ... 143

Figure-114 a: Scale exposed to 0.0007 mg l$^{-1}$ DM showing fusion of circuli in different rows disrupting normal radii. ... 143

Figure-114 b: Scale exposed to 0.0007 mg l$^{-1}$ DM showing severe breakage of lepidonts and circuli. ... 144
Figure-115 a: Scale exposed to 0.0007 mg l⁻¹ DM after 1 week in control condition showing fusion of circuli in same row and erythrocyte extrusion…………………………………………………………144

Figure-115 b: Scale exposed to 0.0007 mg l⁻¹ DM after 1 week in control condition showing breakage of lepidonts and deterioration of circuli…………………………………………………………145

Figure-116 a: Scale exposed to 0.93 mg l⁻¹ Permethrin (PM) showing severe irregularity pattern and distortion of circuli,………………………………………………………………………………145

Figure-116 b: Scale exposed to 0.93 mg l⁻¹ PM showing severe damage of row of lepidonts and circuli ridges……………………………………………………………………………………………………146

Figure-117 a: Scale exposed to 0.093 mg l⁻¹ PM showing mucous deposition over the scale surface and erythrocyte extrusion,……………………………………………………………………………………………………146

Figure-117 b: Scale exposed to 0.093 mg l⁻¹ PM showing complete row of lepidonts eroded with severe damage of circuli,……………………………………………………………………………………………………147

Figure-118 a: Scale exposed to 0.093 mg l⁻¹ PM after 1 week in control condition showing normal circuli pattern……………………………………………………………………………………………………147

Figure-118 b: Scale exposed to 0.093 mg l⁻¹ PM after 1 week in control condition showing less damages of lepidonts and circuli surface……………………………………………………………………………………………………148

Figure-119 a: Scale exposed to 0.0093 mg l⁻¹ PM showing normal circuli pattern…………………148

Figure-119 b: Scale exposed to 0.0093 mg l⁻¹ PM showing less breakage of lepidonts and circuli ridges……………………………………………………………………………………………………149
Figure-120 a: Scale exposed to 0.0093 mg l$^{-1}$ PM after 1 week in control condition showing normal circuli pattern and few erythrocyte extrusion.

Figure-120 b: Scale exposed to 0.0093 mg l$^{-1}$ PM after 1 week in control condition showing damage of lepidonts in the ridges of circuli.
LIST OF TABLES

Table-1: Changes in body weight, length and food consumption rate (mean ± S.D.) in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin for 11 weeks.57

Table-2: Changes in body weight, length and food consumption rate (mean ± S.D.) in *Anabas testudineus* exposed to sublethal concentrations of permethrin for 11 weeks.57

Table-3: Changes in oxygen consumption (mean ± S.D.) in *Anabas testudineus* exposed to sublethal concentrations of deltamethrin for 21 days. ...118

Table-4: Changes in oxygen consumption (mean ± S.D.) in *Anabas testudineus* exposed to sublethal concentrations of permethrin for 21 days. ...118

LIST OF PLATES

Plate-1 a: *Anabas testudineus* ..35

Plate 1 b: Acclimatization of *Anabas testudineus* in glass aquaria in the laboratory35