5. Considerable heterosis was observed for most of the yield contributing traits over better parent, standard check 1 and standard check 2. Plp x K-pap, G-1 x K-pap and G-3 x Sel-75-2-10 were the top heterotic combinations for marketable yield per vine and many of its contributing traits. The cross combinations viz., EC-5082 x SG, EC-5082 x Sel-75-2-10, and G-1 x K-pap, exhibited maximum heterosis for earliness.

6. Majority of the cross combinations succumb to powdery mildew and fruit fly incidence. G-3 x Poinsette was found to be moderately resistant to powdery mildew at Palampur along with its parents. In case of fruit fly infestation, G-3 x Sel-75-2-10 was resistant at both locations whereas, remaining cross combinations were susceptible.
LITERATURE CITED


Gill HS, Singh JP and Pachauri DC. 1973. Pusa Sanyog outyields other cumcumbers. *Indian Horticulture* 18(2) : 11,13, 30


Horst EK and Lower RL. 1978. *Cucumis hardwickii* a source of germplasm for the cucumber breeder. Cucurbit Genetics Cooperative No. 1,5 (in) NC State Univ., Raleigh, USA


Kolyukaeva NL. 1975. Heterotic cucumber hybrids with the use of complex maternal forms. Bulletin vsesoyuznogo ordena Lenina Instituta Rastenie Xodstva Imeni N.I. Vavilova No. 47 : 64-66


Mote ON. 1975. Control of fruit fly (*Dacus cucurbitae*) on bitter gourd and cucumber. *Pesticides* 9(8) : 36-37


Nienhuis J and Lower RL. 1980. Gene effects for several characteristics in a cross between a pickling cucumber inbred (*Cucumis sativus* L.) and *Cucumis hardwickii* R. *HortScience* 15(3) : 420


Panse VG and Sukhatme PV. 1967. Statistical Methods for Agricultural Workers, Indian Council of Agricultural Research, New Delhi pp. 381


Pyzhenkov VI and Kosareva GA. 1981. Heterotic cucumber hybrids for outdoor cultivation and for the plastic greenhouse in the Noncheraozem Zone. Trudy po Priklandnoi Botanike, Genetike i Selektssii 69(3) : 67-72


Rao NGP. 1968. Some considerations in breeding for higher yields. Indian Journal of Genetics and Plant Breeding 28(1) : 31-41

Richey FD and Mayer LA. 1925. Effect of selection on yield of crosses between varieties of corn. USDA, Bulletin 135 : 18


Himachal Journal of Agricultural Research 26(1/2) : 54-61

Sharma TR. 1999. Combining ability and heterosis in garden pea (Pisum sativum var. arvense) in the cold desert Himalayan region. Indian Journal of Agricultural Sciences 69(5) : 386-388


Strepler MS and Wehner TC. 1988. Estimates of heritabilities and genetic
variances of three yield and five quality traits in three fresh market
cucumber populations. *Journal of American Society for Horticultural
Science* 111(4) : 599-605.

sativus* L.). *Vegetable Science* 32(2) : 143-145

ability studies in cucumber (*Cucumus sativus* L.). *Journal of Soils and
Crops* 15(1) : 72-75

Syed RA. 1970. Studies on the ecology of some important species of fruit flies

Takei S and Ono M. 1939. Leaf alcohol. III. Fragrance of cucumber. *Journal of
Agriculture Chemistry Society of Japan* 15 : 193

Tasdighi M and Baker LR. 1981. Combining ability for femaleness and yield in


Vavilov, USSR 96 : 24-25. (Cited from PBA, 52 : 7075)

area in varieties and hybrids of cucumbers. *Referativnyi Zhurnal*

Verma TS, Singh RV and Sharma SC. 2000. Line x tester analysis for combining
ability in cucumber. *Indian Journal of Horticulture* 57(2) : 144-147

Vijaya Kumari P, More TA and Seshadri VS. 1993. Heterosis in tropical and
temperate gynoecious hybrids in cucumber. *Vegetable Science* 20(2)
: 152-157


Wehner TC and Miller CH. 1985. Effect of gynoecious expression on yield and earliness of a fresh market cucumber hybrid. *Journal of the American Society of Horticultural Science* 110(4) : 464-466


