REVIEW OF LITERATURE

Table-2-1: Different recombinant antigens with their sensitivity and specificity. 23

Table-2-2: Traditional serological tests using different preparations of hydatid antigen with their sensitivity and specificity. 26

Table-2-3: Enzyme immunoassays using different preparations of hydatid antigen with their sensitivity and specificity. 29

Table-2-4: Hydatid antigen detection assays in serum with their sensitivity and specificity. 32

Table-2-5: Characteristics of Echinococcus species. 35

Table-2-6: Strains of Echinococcus granulosus 41

CHAPTER-II

Table-5-1: Age and sex distribution of Group-I and Group-II cases of CE. 108

Table-5-2: Predilection of hydatid cysts towards different body parts in patients with CE. 109

Table-5-3: Occupational profile of patients with CE. 109

Table-5-4: Estimation of the cut-off OD_{492} values for the ELISA for detection of E. granulosus IgG antibodies in serum. 110

Table-5-5: ELISA using E. granulosus recombinant antigens for detection of E. granulosus IgG antibodies in serum from cases of CE and controls. 111

Table-5-6: Dot-ELISA using E. granulosus recombinant antigens for detection of IgG antibodies in sera from cases of CE and controls. 114

Table-5-7: Estimation of the cut-off OD_{492} values for the Ag-ELISA for detection of E. granulosus antigens in serum. 117
Table-5-8: Ag-ELISA in serum using anti-Eg-rCW12, anti-Eg-rCW24 and anti-Rec Eg-AgB8/2 antibodies for detection of *E. granulosus* antigen in sera from cases with CE and controls.

Table-5-9: Ag-Dot-ELISA using anti-Eg-rCW12, anti-Eg-rCW24 and anti-Rec Eg-AgB8/2 antibodies for detection of *E. granulosus* antigen in sera of cases with CE and controls.

CHAPTER-III

Table-6-1: Primers used for the random amplification of polymorphic DNA by PCR.

Table-6-2: Genetic analysis of the individual G1, G3 and G5 populations of *E. granulosus* isolated from different geographical regions in South India.

Table-6-3: Genetic analysis of the group of G1 and G5 populations isolated from different geographical regions in South India.
INTRODUCTION

Fig 1-1: Life cycle of *Echinococcus* spp.
Fig 1-2: Summary of the potential immunological mechanisms operating during an *E. granulosus* infection.

CHAPTER-I

Fig 4-1: Total RNA extracted from germinal membrane of hydatid cyst obtained from human patients.
Fig 4-2: Size of double-stranded cDNA synthesised from *E. granulosus* metacestode germinal membrane mRNA after second-strand cDNA synthesis.
Fig 4-3: cDNA insert sizes of the nine positive clones selected by immunoscreening of the *E. granulosus* germinal membrane cDNA library.
Fig 4-4: Whole cell protein profiles of recombinant *E. coli* cells after induction with IPTG.
Fig 4-5: Colonies of recombinant *E. coli* cells on LB agar plates.
Fig 4-6: Whole cell protein profiles of recombinant *E. coli* cells (DH5a) containing *E. granulosus* antigens and purified *E. granulosus* GST-fusion proteins.
Fig 4-7: Purified recombinant antigens after cleaving GST moiety.
Fig 4-8: EITB using *E. granulosus* recombinant antigens with a pool of sera from patients with surgically confirmed CE, hyperimmune rabbit serum produced against hydatid cyst wall (HCW) antigens and hyperimmune rabbit serum produced against hydatid cyst fluid (HCF) antigens.
CHAPTER-II

Fig 5-1: Scatter plots showing relative distribution of OD_{492} values in the ELISA using *E. granulosus* recombinant antigen Eg-rCW12 for detection of antibodies in serum from cases with CE and controls.

Fig 5-2: Scatter plots showing relative distribution of OD_{492} values in the ELISA using *E. granulosus* recombinant antigen Eg-rCW24 for detection of antibodies in serum from cases with CE and controls.

Fig 5-3: Scatter plots showing relative distribution of OD_{492} values in the ELISA using *E. granulosus* recombinant antigen B fraction, Rec Eg-AgB8/2, for detection of antibodies in serum from cases with CE and controls.

Fig 5-4(a-c) Chromatogram showing elution of IgG fraction from rabbit immune sera raised against *E. granulosus* recombinant antigens

Fig 5-5(a-c) Estimation of antigen detection limit for the Ag-ELISA using the monospecific antibodies raised against *E. granulosus* recombinant antigens.

Fig 5-6: Scatter plots showing relative distribution of OD_{492} values in the Ag-ELISA using anti-Eg-rCW12 antibody for detection of antigens in sera from cases with CE and controls.

Fig 5-7: Scatter plots showing relative distribution of OD_{492} values in the Ag-ELISA using anti-Eg-rCW24 antibody for detection of antigens in sera from cases with CE and controls.

Fig 5-8: Scatter plots showing relative distribution of OD_{492} values in the Ag-ELISA using anti-Rec Eg-AgB/2 antibody for detection of antigens in sera from cases with CE and controls.
CHAPTER-III

Fig 6-1: PCR amplified product of the internal transcribed spacer-1 (ITS-1) region of rDNA using *E. granulosus* DNA. 145

Fig 6-2: Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) banding patterns of different strains of *E. granulosus* derived by *Cfo* I restriction endonuclease digestion of the PCR amplified internal transcribed spacer-1 (ITS-1) of rDNA. 147

Fig 6-3: Polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) banding patterns of different strains of *E. granulosus* derived by *Alu* I restriction endonuclease digestion of the PCR amplified internal transcribed spacer-1 (ITS-1) of rDNA. 147

Fig 6-4: RAPD-PCR profiles of different strains of *E. granulosus* using six different random primers. 148

Fig 6-5: RAPD-PCR profiles of the strains of *E. granulosus* isolated from humans residing in different geographical regions in South India. 150

Fig 6-6: RAPD-PCR profiles of all control strains. 151

Fig 6-7: Dendrogram showing the individual populations of *E. granulosus* collected from different geographical areas in South India. 153

Fig 6-8: Dendrogram showing the groups of *E. granulosus* strains with respect to the geographical area. 155

XXXXXXXX